• Title/Summary/Keyword: Bio chip

Search Result 223, Processing Time 0.031 seconds

Functional Expression of SAV3818, a Putative TetR-Family Transcriptional Regulatory Gene from Streptomyces avermitilis, Stimulates Antibiotic Production in Streptomyces Species

  • Duong, Cae Thi Phung;Lee, Han-Na;Choi, Si-Sun;Lee, Sang-Yup;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.136-139
    • /
    • 2009
  • Avermectin and its analogs are major commercial antiparasitic agents in the fields of animal health, agriculture, and human infections. Previously, comparative transcriptome analysis between the low-producer S. avermitilis ATCC31267 and the high-producer S. avermitilis ATCC31780 using a S. avermitilis whole genome chip revealed that 50 genes were overexpressed at least two-fold higher in S. avermitilis ATCC31780. To verify the biological significance of some of the transcriptomics-guided targets, five putative regulatory genes were individually cloned under the strong-and-constitutive promoter of the Streptomyces expression vector pSE34, followed by the transformation into the low-producer S. avermitilis ATCC31267. Among the putative genes tested, three regulatory genes including SAV213, SAV3818, and SAV4023 exhibited stimulatory effects on avermectin production in S. avermitilis ATCC31267. Moreover, overexpression of SAV3818 also stimulated actinorhodin production in both S. coelicolor M145 and S. lividans TK21, implying that the SAV3818, a putative TetR-family transcriptional regulator, could be a global upregulator acting in antibiotic production in Streptomyces species.

A K-Band Low-Power Miniaturized Hyperthermia System

  • Kim, Dong-Ki;Kim, Ki-Hyun;Oh, Jung-Min;Park, Young-Rak;Kwon, Young-Woo
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.188-193
    • /
    • 2009
  • A K-band low-power miniaturized planar-type hyperthermia system was developed to replace massive and expensive equipment. The system consists of a VCO with a buffer amplifier, a high-power amplifier module, a 20-dB-coupled line coupler, a chip circulator and two power detectors for signal generation, amplification and power monitoring. All these components have been implemented in planar form on two module blocks. The total size of the hyperthermia system was less than $10\times6.5\times3\;cm^3$. In order to verify the system performance, ablations were carried out on nude mice xenografted with human breast cancer. Ablation results show performance comparable to the massive components-based system. This work shows the feasibility of a low-cost miniaturized hyperthermia system for practical clinical applications.

Numerical Simulation of Micro-Fluidic Flows of the Inkjet Printing Deposition Process for Microfabrication

  • Chau S.W.;Chen S.C.;Liou T.M.;Hsu K.L.;Shih K.C.;Lin Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.113-115
    • /
    • 2003
  • Droplet impinging into a cavity at micro-scale is one of important fluidic issues for microfabrications, e.g. bio-chip applications and inkjet deposition processes in the PLED panel manufacturing. The droplets generally dispensing from an inkjet head, which contains an array of nozzles, have a volume in several picoliters, while each nozzle jets the droplets into cavities with micron-meter size located on substrates. Due to measurement difficulties at micro-scale, the numerical simulation could serve as an efficient and preliminary way to evaluate the micro-sized droplet impinging behavior into a cavity. The micro-fluidic flow is computed by solving the three-dimensional Navier-Stokes equations through a finite volume discretization. The droplet front is predicted by a volume-of-fluid approach, in which the surface tension is modeled as a function of the fluid concentration. This paper discusses the influence of fluid properties, such as surface tension and fluid viscosity, on micro-fluidic characteristics at different jetting speeds in the deposition process via the proposed numerical approach.

  • PDF

Experimental Study of Dynamic Behavior of a Water Droplet on Diverse Wrinkling Surfaces (마이크로 표면주름 구조에 따른 물방울 동적거동에 관한 실험적 연구)

  • Baek, Dae Hyeon;Zhao, Zhijun;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.577-585
    • /
    • 2015
  • We fabricated multi-scale such as macro-, micro-, and multi-scale wrinkles by using repetitive volume dividing (RVD) method and thermal curing process. Also wrinkle surface was modified with coating of a self-assembled monolayer (SAM). We measured the contact angle of each wrinkled surface, and observed the behavior of droplets on sloping surface. Through experimental study, we found out that the contact angle was much higher in case of multi-scale and SAM coated wrinkles. And micro-scale wrinkle showed a high contact angle comparing with that of macro-scale wrinkle. Dynamic behaviors of a water droplet like sliding velocity on diverse wrinkled surfaces were dependent on their static contact angles. These results showed that hydro-dynamic characteristics were changed depending on the wrinkle structure and the material forming the wrinkle. These dynamic characteristics can be utilized in bio-chip, microfluidics, and many others in order to control easily chemical reactivity.

A study on the process optimization of injection molding for replicability enhancement of micro channel (미세채널 전사성 향상을 위한 사출성형 공정최적화 기초연구)

  • Go, Young-Bae;Kim, Jong-Sun;Yu, Jae-Won;Min, In-Gi;Kim, Jong-Duck;Yoon, Kyung-Hwan;Hwang, Cheul-Jin
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Micro channel is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, stamper of cross channel with width $100{\mu}m$ and height $50{\mu}m$ was manufactured using UV-LiGA process. Micro channel was manufactured using stamper manufactured in this study. Also replicability appliance was evaluated for micro channel and factors affected replicability were investigated using Taguchi method.

  • PDF

Bio-inspired Cell Deformability Monitoring Chips Based on Strain Dependent Digital Lysis Rates (미소유로의 길이에 따른 통과세포의 파괴율을 바탕으로 한 생체모사 세포 변형성 검사칩에 관한 연구)

  • Youn, Se-Chan;Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.844-849
    • /
    • 2008
  • We present a novel cell deformability monitoring chip based on the digitally measured cell lysis rate which is dependent on the areal strain of the cell membrane. This method offers simple cell deformability monitoring by automated high-throughput testing system. We suggest the filter design considering the areal strain imposed on the cell membrane passing through the filter array having gradually increased orifice length. In the experiment using erythrocytes, we characterized the cell deformability in terms of average fracture areal strain which was $0.24{\pm}0.014\;and\;0.21{\pm}0.002$ for normal and chemically treated erythrocytes, respectively. We also verified that the areal strain of 0.15 effectively discriminates the deformability difference of normal and chemically treated erythrocytes, which can be applied to the clinical situation. We compared the lysis rates and their difference for the samples from different donors and found that the present chips can be commonly used without any calibration process. The experimental results demonstrate the simple structure and high performance of the present cell deformability monitoring chips, applicable to simple and cost-effective cell aging process monitoring.

Flow Characteristics in a Microchannel Fabricated on a Silicon Wafer (실리콘 웨이퍼 상에 제작된 미소 유로에서의 유동특성)

  • Kim, Hyeong-U;Won, Chan-Sik;Jeong, Si-Yeong;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1844-1852
    • /
    • 2001
  • Recent developments in microfluidic devices based on microelectromechanical systems (MEMS) technique find many practical applications, which include electronic chip cooling devices, power MEMS devices, micro sensors, and bio-medical devices among others. For the design of such micro devices, flows characteristics inside a microchannel have to be clarified which exhibit somewhat different characteristics compared to conventional flows in a macrochannel. In the present study microchannels of various hydraulic diameters are fabricated on a silicon wafer to study the pressure drop characteristics. The effect of abrupt contraction and expansion is also studied. It is found from the results that the friction factor in a straight microchannel is about 15% higher than that in a conventional macrochannel, and the loss coefficients in abrupt expansion and contraction are about 10% higher than that obtained through conventional flow analysis.

Micro-LIF measurement of microchannel flow

  • Kim Kyung Chun;Yoon Sang Youl
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.65-74
    • /
    • 2004
  • Measurement of concentration distributions of suspended particles in a micro-channel is out of the most crucial necessities in the area of Lab-on-a-chip to be used for various bio-chemical applications. One most feasible way to measure the concentration field in the micro-channel is using micro-LIF(Laser Induced Fluorescence) method. However, an accurate concentration field at a given cross plane in a micro-channel has not been successfully achieved so far due to various limitations in the light illumination and fluorescence signal detection. The present study demonstrates a novel method to provide an ultra thin laser sheet beam having five(5) microns thickness by use of a micro focus laser line generator. The laser sheet beam illuminates an exact plane of concentration measurement field to increase the signal to noise ratio and considerably reduce the depth uncertainty. Nile Blue A was used as fluorescent dye for the present LIF measurement. The enhancement of the fluorescent intensity signals was performed by a solvent mixture of water $(95\%)$ and ethanol (EtOH)/methanol (MeOH) $(5\%)$ mixture. To reduce the rms errors resulted from the CCD electronic noise and other sources, an expansion of grid size was attempted from $1\times1\;to\;3\times3\;or\;5\times5$ pixel data windows and the pertinent signal-to-noise level has been noticeably increased accordingly.

  • PDF

Biochemical Application of IgG Fc-Binding Peptide: From Biochip to Targeted Nano Carrier

  • Chung, Sang J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.110-111
    • /
    • 2013
  • FcBP consisting of 13 amino acids specifically binds to Immunoglobulin G Fc domain. Initially, we utilized this peptide for preparation of antibody chip as a PEG composite for enhanced solubility. After then, the peptide conjugate was immobilized on agarose resin, resulting in highly efficient affinity column for antibody purification. The efficiency was comparable to commercial Protein A column. Recently, this peptide was conjugated with cell penetrating peptide (CPP) on a backbone of GFP, affording antibody transducer, which carries antibody into live cells by simple mixing of antibody and the transducer in cell culture media. Antibody transduction into cells was monitored by live cell imaging. More recently, the FcBP was fused to ferritin cage, which consists of 24 ferritin protein molecules. The FcBP-ferritin cage showed greatly increased binding affinity to human IgG. Its binding was analyzed by QCM and SPR analysis. Finally, it was selectively delivered by Herceptin to SKBR3, a breast cancer cell, over MCF10A, non-tumorigenic cells (Fig. 1). Fig. 1. Fluorescent microscopic images of SKBR3 breast cancer cells (A~C) and MCF10A breast cells (D~F) treated with Cy3-trastuzumab/fFcBP-Pf_Fn complexes. Trastuzumab and FcBP-Pf_Fn, which were labeled with Cy3 (Cy3-trastuzumab) and fluorescein (fFcBP-Pf_Fn), respectively, selectively targeted SKBR3 over MCF10A.

  • PDF

Analyses of Shear and Frictional Characteristics in Drilling Process (드릴링 공정의 전단 및 마찰 특성 해석)

  • Kim, Sun-Il;Choi, Won-Sik;Son, Jae-Hwan;Jang, Eun-Suk;Lee, Young-Moon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.22-27
    • /
    • 2012
  • Drilling process is usually the most efficient and economical method of making a hole in a solid body. However, there have been no analytical method to assess drilling process based on the shear and frictional characteristics. In this paper, procedures for analyzing shear and frictional processes of drilling have been established by adopting an equivalent turning system to drilling. A series of drilling experiments were carried out with varying feed, velocity and drill shape factors. Using the results of the experiments, the cutting characteristics including shear in the primary shear zone and friction in the chip-tool contact region of drilling process have been analyzed. The specific cutting energy tends to decrease exponentially with increase of feed rate. In drilling process 35-40% of the total energy is consumed in the friction process. This is greater than that of turning process in cutting of the same work material.