• Title/Summary/Keyword: Bio Sample

Search Result 397, Processing Time 0.03 seconds

A High-Speed Single Crystal Silicon AFM Probe Integrated with PZT Actuator for High-Speed Imaging Applications

  • Cho, Il-Joo;Yun, Kwang-Seok;Nam, Hyo-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.119-122
    • /
    • 2011
  • A new high speed AFM probe has been proposed and fabricated. The probe is integrated with PZT actuated cantilever realized in bulk silicon wafer using heavily boron doped silicon as an etch stop layer. The cantilever thickness can be accurately controlled by the boron diffusion process. Thick SCS cantilever and integrated PZT actuator make it possible to be operated at high speed for fast imaging. The resonant frequency of the fabricated probe is 92.9 kHz and the maximum deflection is 5.3 ${\mu}m$ at 3 V. The fabricated probe successfully measured the surface of standard sample in an AFM system at the scan speed of 600${\mu}m$/sec.

Micro-PIV Analysis of Electro-osmotic Flow inside Microchannels (마이크로 채널 내부 전기삼투 유동에 대한 PIV유동 해석)

  • Kim Yang-Min;Lee Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.47-51
    • /
    • 2003
  • Microfluidic chips such as lab-on-a-chip (LOC) include micro-channels for sample delivery, mixing, reaction, and separation. Pressure driven flow or electro-osmotic flow (EOF) has been usually employed to deliver bio-samples. Having some advantages of easy control, the flow characteristics of EOF in microchannels should be fully understood to effectively control the electro-osmotic pump for bio-sam-pie delivery. In this study, a micro PIV system with an epifluorescence inverted microscope and a cooled CCD was used to measure velocity fields of EOF in a glass microchannel and a PDMS microchannel. The EOF velocity fields were changed with respect to electric charge of seeding particles and microchannel materials used. The EOF has nearly uniform velocity distribution inside the microchannel when pressure gradient effect is negligible. The mean streamwise velocity is nearly proportional to the applied electric field. Glass microchannels give better repeatability in PIV results, compared with PDMS microchannels which are easy to fabricate and more suitable for PIV experiments.

  • PDF

Development of a Supporting System for Nutrient Solution Management in Hydroponics - II. Estimation of Electrical Conductivity(EC) using Neural Networks (양액재배를 위한 배양액관리 지원시스템의 개발 - II. 신경회로망에 의한 전기전도도(EC)의 추정)

  • 손정익;김문기;남상운
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.162-168
    • /
    • 1992
  • As the automation of nutrient solution management proceeds in the field of hydroponics, effective supporting systems to manage the nutrient solution by computer become needed. This study was attempt to predict the EC of nutrient solution using the neural networks. The multilayer perceptron consisting of 3 layers with the back propagation learning algorithm was selected for EC prediction, of which nine variables in the input layer were the concentrations of each ion and one variable in the output layer the EC of nutrient solution. The meq unit in ion concentration was selected fir input variable in the input layer. After the 10,000 learning sweeps with 108 sample data, the comparison of predicted and measured ECs for 72 test data showed good agreements with the correlation coefficient of 0.998. In addition, the predicted ECs by neural network showed relatively equal or closer to the measured ones than those by current complicated models.

  • PDF

The Effects of Electron Beam Exposure Time on Transmission Electron Microscopy Imaging of Negatively Stained Biological Samples

  • Kim, Kyumin;Chung, Jeong Min;Lee, Sangmin;Jung, Hyun Suk
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.150-154
    • /
    • 2015
  • Negative staining electron microscopy facilitates the visualization of small bio-materials such as proteins; thus, many electron microscopists have used this conventional method to visualize the morphologies and structures of biological materials. To achieve sufficient contrast of the materials, a number of imaging parameters must be considered. Here, we examined the effects of one of the fundamental imaging parameters, electron beam exposure time, on electron densities generated using transmission electron microscopy. A single site of a negatively stained biological sample was illuminated with the electron beam for different times (1, 2, or 4 seconds) and sets of micrographs were collected. Computational image processing demonstrated that longer exposure times provide better electron densities at the molecular level. This report describes technical procedures for testing parameters that allow enhanced evaluations of the densities of electron microscopy images.

Analysis of the Scattering Coefficients of Microspheres Using Spectroscopic Optical Coherence Tomography

  • Song, Woosub;Lee, Seung Seok;Lee, Byeong-il;Choi, Eun Seo
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.278-288
    • /
    • 2021
  • We propose a characterization method for the scattering property of microspheres using spectroscopic optical coherence tomography (OCT). To prove the effectiveness of the proposed method, we prepare solutions of different concentrations using microspheres ranging from 28 to 2300 nm in diameter. Time-frequency analysis is performed on the measured interference spectrum of each solution, and the resulting spectroscopic information is converted into histograms for centroid wavelengths. The histograms present a very sensitive response to changes in the concentration and size of microspheres. We classify them into three categories according to their characteristics. When the histogram of each category is replaced with the corresponding calculated value of the scattering coefficient, each category is mapped to a different scattering-coefficient region. It is expected that the proposed method could be used to investigate the optical characteristics of a biological sample from OCT images, which would be helpful for optical diagnostic and therapeutic applications.

Optimization of Extraction Conditions for Cabbage (홍월적 양배추의 추출조건 최적화)

  • Do, Jeong-Ryong;Kim, Hyun-Ku;Hong, Joo-Heon;Lee, Gee-Dong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1625-1632
    • /
    • 2005
  • This study was conducted to monitor the extraction yields and functional properties from cabbage by a response surface methodology. The extract yield was maximized as 44.47$\%$ under the temperature of 79.86$^{\circ}C$, ethanol concentration of 56.84$\%$ and solvent to sample ratio 25.58 mL/g . The maximum value of electron donating ability was 85.46$\%$ at 46.38$^{\circ}C$,57.06$\%$ of ethanol concentration and 27.71 mL/g of solvent to sample ratio. The maximum value of tyrosinase inhibitory effect was 69.37$\%$ at 37.5$^{\circ}C$,47.71$\%$ of ethanol concentration and 16.03 mL/g of solvent to sample ratio. The maximum value of SOD-like activity was 48.36$\%$ in 66.12$^{\circ}C$, 70.35$\%$ of ethanol concentration and 29.13 mL/g of solvent to sample ratio. Estimated conditions for the maximized extraction including yield, electron donating ability and SOD-like activity were 20 $\∼$ 30 mL/g in ratio of solvent to sample, 25$\∼$85$\%$ in ethanol concentration, and 40$\∼$90$^{\circ}C$ in extraction temperature.

A Study on the Physicochemical Characteristics of Saw Palmetto Extract (쏘팔메토(Saw Palmetto) 열매 추출물의 이화학적인 특성 연구)

  • Jeong-Eun Lee;Jung-Uk Kim;Hee-Young Lee;Ji-Hye Eom;Jong-Gil Kim;Young-Yul Lee;Hyeon-Ji Bae;Seung-Woo Kim;Ho-Jeong Yun;Su-Mi Han;Jong-Ho Koh;Moochang Kook;Young-Sang Lee
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.3
    • /
    • pp.202-208
    • /
    • 2023
  • FT-IR, GC/MS, and ATR-FT-IR analyses were performed to confirm the physicochemical characteristics of saw palmetto fruit (SPF) extract. FT-IR analysis of the standard product showed that the band corresponding to the carbonyl bond of free fatty acid was stronger than the band of acyl-glyceride. Sample E was identified as having the same trend as the standard sample. Fatty acid composition analysis revealed that the main fatty acids in the standard sample were lauric acid and oleic acid. The content of lauric acid ranged from approximately 30% to 38% in samples B, C, D, and E, while the content of oleic acid ranged from approximately 29% to 34%. The GC/MS analysis confirmed that the standard SPF extract consisted of fatty acids and fatty acid ethyl esters. Sample E demonstrated a similar pattern to the standard samples in terms of oleic acid, lauric acid, and fatty acid esters. ATR-FT-IR analysis indicated that only sample E was predicted to contain 100% saw palmetto extract. Therefore, these study findings can be considered fundamental data for analyzing the physicochemical characteristics of the composition of SPF extract.

Study on the Conditioning of Brown Rice (I) -Property variation and predicted model of brown rice after Conditioning- (현미 조질에 관한 연구 (I) -조질 후 현미의 물성 변화와 예측모델-)

  • 한충수;연광석;강태환;전홍영;고학균
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2001
  • This research conducted to investigate the variation of the moisture content, crack ratio, and hardness of the whole and cracked brown rice after conditioning at the initial moisture content of 13, 14, and 15% with time lapse. The conditioning was conducted by increasing the moisture content of the sample to 0.4 and 0.8%. For basic information and conditioning characteristics for the development of a conditioning machine for the brown rice, predicted models of above three properties were developed using a nonlinear regression analysis of SAS with Gauss-Newton, Gradient, and DUD methods. Results of this research could be summarized as follows. 1. No moisture variation occurred after 0.5 hour conditioning. 2. The increasement of the crack ratio was 7.6 and 17.5% with the sample increased the moisture content of 0.4 and 0.8%, respectively, after 8 hours conditioning. 3. The hardness of the conditioned whole grain of the brown rice decreased 0.82 and 1,000kg$\_$f/ with the sample increased moisture content 0.4 and 0.8%, respectively, after 8 hours conditioning with respect to the non-conditioned sample. 4. The hardness of the conditioned cracked grain of the brown rice decreased 0.54 and 0.81kg$\_$f/ with the sample increased moisture content 0.4 and 0.8%, respectively, after 8 hours conditioning with respect to the non-conditioned sample. The hardness of the broken grain was about 0.81∼1.88kg$\_$f/ lower than whole grain. 5. The moisture content variation, increasing rate of the crack ratio, and hardness of the cracked and whole grain was predicted as a negative exponential function. 6. Each predicted model with the nonlinear regression analysis, which was very accurate and had a very small amount of sum of square of error between experimental value and predicted value, which could be used for predicting the physical variation after conditioning.

  • PDF

An Isothermal Temperature Source with a Large Surface Area using the Metal-Etched Microwick-Inserted Vapor Chamber Heat Spreader

  • Go, Jeong-Sang;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.681-688
    • /
    • 2004
  • For use of the thermal cycle of the biochemical fluid sample, the isothermal temperature source with a large surface area was designed, fabricated and its thermal characterization was experimentally evaluated. The comprehensive overview of the technology trend on the temperature control devices was detailed. The large surface area isothermal temperature source was realized by using the vapor chamber heat spreader. The cost-effectiveness and simple manufacturing process were achieved by using the metal-etched wick structure. The temperature distribution was quantitatively investigated by using IR temperature imaging system at equivalent temperatures to the PCR thermal cycle. The standard deviation was measured to be within 0.7$^{\circ}C$ for each temperature cycle. This concludes that the presented isothermal temperature source enables no temperature gradient inside bio-sample fluid. Furthermore it can be applied to the cooling of the electronic devices due to its slimness and low thermal spreading resistance.

Magnetic Bead-Based Immunoassay on a Microfluidic Lab-on-a-Chip

  • Park, Jin-Woo;Chong H. Ahn
    • The Magazine of the IEIE
    • /
    • v.29 no.3
    • /
    • pp.41-48
    • /
    • 2002
  • This paper presents a basic concept of lab-on-a-chip systems and their advantages in chemical and biological analyses. In addition, magnetic bead-based immunoassay on a microfluidic system is also presented as a typical example of lab-on-chip systems. Rapid and low volume immunoassays have been successfully achieved on the demonstrated lab-on-a-chip using magnetic beads, which are used as both immobilization surfaces and bio-molecule carriers. Total time required for an immunoassay was less than 20 minutes including sample incubation time, and sample volume wasted was less than $50{\mu}l$ during five repeated assays. Lab-on-a-chip is becoming a revolutionary tool for many different applications in chemical and biological analysis due to its fascinating advantages (fast and low cost) over conventional chemical or biological laboratories. Furthermore, simplicity of lab-on-a-chip systems will enable self-testing capability for patients or health consumers overcoming space limitation.

  • PDF