• Title/Summary/Keyword: Binding inhibitor

Search Result 526, Processing Time 0.027 seconds

Circ_UBE2D2 Attenuates the Progression of Septic Acute Kidney Injury in Rats by Targeting miR-370-3p/NR4A3 Axis

  • Huang, Yanghui;Zheng, Guangyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.740-748
    • /
    • 2022
  • As circ_UBE2D2 has been confirmed to have targeted binding sites with multiple miRNAs involved in septic acute kidney injury (SAKI), efforts in this study are directed to unveiling the specific role and relevant mechanism of circ_UBE2D2 in SAKI. HK-2 cells were treated with lipopolysaccharide (LPS) to construct SAKI model in vitro. After sh-circ_UBE2D2 was transfected into cells, the transfection efficiency was detected by qRT-PCR, cell viability and apoptosis were determined by MTT assay and flow cytometry, and expressions of Bcl-2, Bax and Cleaved-caspase 3 were quantified by western blot. Target genes associated with circ_UBE2D2 were predicted using bioinformatics analysis. After the establishment of SAKI rat model, HE staining and TUNEL staining were exploited to observe the effect of circ_UBE2D2 on tissue damage and cell apoptosis. The expression of circ_UBE2D2 was overtly elevated in LPS-induced HK-2 cells. Sh-circ_UBE2D2 can offset the inhibition of cell viability and the promotion of cell apoptosis induced by LPS. Circ_UBE2D2 and miR-370-3p as well as miR-370-3p and NR4A3 have targeted binding sites. MiR-370-3p inhibitor reversed the promoting effect of circ_UB2D2 silencing on viability of LPS-treated cells, but shNR4A3 neutralized the above inhibitory effect of miR-370-3p inhibitor. MiR-370-3p inhibitor weakened the down-regulation of NR4A3, Bax and Cleaved caspase-3 and the up-regulation of Bcl-2 induced by circ_UB2D2 silencing, but these trends were reversed by shNR4A3. In addition, sh-circ_UBE2D2 could alleviate the damage of rat kidney tissue. Circ_UBE2D2 mitigates the progression of SAKI in rats by targeting miR-370-3p/NR4A3 axis.

Magnolol Inhibits LPS-induced NF-${\kappa}B$/Rel Activation by Blocking p38 Kinase in Murine Macrophages

  • Li, Mei Hong;Kothandan, Gugan;Cho, Seung-Joo;Huong, Pham Thi Thu;Nan, Yong Hai;Lee, Kun-Yeong;Shin, Song-Yub;Yea, Sung-Su;Jeon, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.353-358
    • /
    • 2010
  • This study demonstrates the ability of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, to inhibit LPS-induced expression of iNOS gene and activation of NF-${\kappa}B$/Rel in RAW 264.7 cells. Immunohisto-chemical staining of iNOS and Western blot analysis showed magnolol to inhibit iNOS gene expression. Reporter gene assay and electrophoretic mobility shift assay showed that magnolol inhibited NF-${\kappa}B$/Rel transcriptional activation and DNA binding, respectively. Since p38 is important in the regulation of iNOS gene expression, we investigated the possibility that magnolol to target p38 for its anti-inflammatory effects. A molecular modeling study proposed a binding position for magnolol that targets the ATP binding site of p38 kinase (3GC7). Direct interaction of magnolol and p38 was further confirmed by pull down assay using magnolol conjugated to Sepharose 4B beads. The specific p38 inhibitor SB203580 abrogated the LPS-induced NF-${\kappa}B$/Rel activation, whereas the selective MEK-1 inhibitor PD98059 did not affect the NF-${\kappa}B$/Rel. Collectively, the results of the series of experiments indicate that magnolol inhibits iNOS gene expression by blocking NF-${\kappa}B$/Rel and p38 kinase signaling.

Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

  • Hur, Jeonghwan;Ghosh, Ambarnil;Kim, Kabsun;Ta, Hai Minh;Kim, Hyunju;Kim, Nacksung;Hwang, Hye-Yeon;Kim, Kyeong Kyu
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.316-321
    • /
    • 2016
  • The receptor activator of nuclear factor ${\kappa}B$ (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.

Cinnamic acid derivatives as potential matrix metalloproteinase-9 inhibitors: molecular docking and dynamics simulations

  • Mohammad Hossein Malekipour;Farzaneh Shirani;Shadi Moradi;Amir Taherkhani
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.9.1-9.13
    • /
    • 2023
  • Matrix metalloproteinase-9 (MMP-9) is a zinc and calcium-dependent proteolytic enzyme involved in extracellular matrix degradation. Overexpression of MMP-9 has been confirmed in several disorders, including cancers, Alzheimer's disease, autoimmune diseases, cardiovascular diseases, and dental caries. Therefore, MMP-9 inhibition is recommended as a therapeutic strategy for combating various diseases. Cinnamic acid derivatives have shown therapeutic effects in different cancers, Alzheimer's disease, cardiovascular diseases, and dental caries. A computational drug discovery approach was performed to evaluate the binding affinity of selected cinnamic acid derivatives to the MMP-9 active site. The stability of docked poses for top-ranked compounds was also examined. Twelve herbal cinnamic acid derivatives were tested for possible MMP-9 inhibition using the AutoDock 4.0 tool. The stability of the docked poses for the most potent MMP-9 inhibitors was assessed by molecular dynamics (MD) in 10 nanosecond simulations. Interactions between the best MMP-9 inhibitors in this study and residues incorporated in the MMP-9 active site were studied before and after MD simulations. Cynarin, chlorogenic acid, and rosmarinic acid revealed a considerable binding affinity to the MMP-9 catalytic domain (ΔGbinding < -10 kcal/ mol). The inhibition constant value for cynarin and chlorogenic acid were calculated at the picomolar scale and assigned as the most potent MMP-9 inhibitor from the cinnamic acid derivatives. The root-mean-square deviations for cynarin and chlorogenic acid were below 2 Å in the 10 ns simulation. Cynarin, chlorogenic acid, and rosmarinic acid might be considered drug candidates for MMP-9 inhibition.

The Molecular Modeling of Novel Inhibitors of Protein Tyrosine Phosphatase 1B Based on Catechol by MD and MM-GB (PB)/SA Calculations

  • Kocakaya, Safak Ozhan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1769-1776
    • /
    • 2014
  • Binding modes of a series of catechol derivatives such as protein tyrosine phosphatase 1B (PTP1B) inhibitors were identified by molecular modeling techniques. Docking, molecular dynamics simulations and free energy calculations were employed to determine the modes of these new inhibitors. Binding free energies were calculated by involving different energy components using the Molecular Mechanics-Poisson-Boltzmann Surface Area and Generalized Born Surface Area methods. Relatively larger binding energies were obtained for the catechol derivatives compared to one of the PTP1B inhibitors already in use. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicated that the hydroxyl functional groups and biphenyl ring system had favorable interactions with Met258, Tyr46, Gln262 and Phe182 residues of PTP1B. The results of hydrogen bound analysis indicated that catechol derivatives, in addition to hydrogen bonding interactions, Val49, Ile219, Gln266, Asp181 and amino acid residues of PTP1B are responsible for governing the inhibitor potency of the compounds. The information generated from the present study should be useful for the design of more potent PTP1B inhibitors as anti-diabetic agents.

Binding Mode and Inhibitory Activity of Constituents Isolated from Sclerotium of Poria cocos with DNA Topoisomerase I (Poria cocos 균핵에서 분리한 성분들과 DNA Topoisomerase I의 반응양상 및 효소저해 활성)

  • Choi, Inhee;Kim, Ji-Hyun;Kim, Choonmi
    • YAKHAK HOEJI
    • /
    • v.49 no.5
    • /
    • pp.428-436
    • /
    • 2005
  • DNA topoisomerase I(TOP1) helps the control of DNA replication, transcription and recombination by assist­ing breaking and rejoining of DNA double strand. Camptothecin (CPT) and its derivative, topotecan, are known to inhibit TOP1 by intercalating into TOP1-DNA complex. Recently various non-CPT intercalators are synthesized for a new class of TOP1 inhibitors. In this study, six compounds isolated from Poria cocos were investigated for their interaction with TOP1­DNA complex using the flexible docking program, FlexiDock. The binding modes were analyzed and compared with the TOP1 inhibition activities. The compounds that showed potent activity were intercalated between the + 1/-1 base pairs of DNA, located near the active site phosphotyrosine723 and formed hydrogen bonds with active site residues. On the other hand, compounds with no activity were not docked at all. The binding modes were well correlated with the inhibition activity, suggesting the possibility that potent inhibitors can be designed from the information presented by the docking study.

Structural Insight into Dihydrodipicolinate Reductase from Corybebacterium glutamicum for Lysine Biosynthesis

  • Sagong, Hye-Young;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.226-232
    • /
    • 2016
  • Dihydrodipicolinate reductase is an enzyme that converts dihydrodipicolinate to tetrahydrodipicolinate using an NAD(P)H cofactor in L-lysine biosynthesis. To increase the understanding of the molecular mechanisms of lysine biosynthesis, we determined the crystal structure of dihydrodipicolinate reductase from Corynebacterium glutamicum (CgDapB). CgDapB functions as a tetramer, and each protomer is composed of two domains, an Nterminal domain and a C-terminal domain. The N-terminal domain mainly contributes to nucleotide binding, whereas the C-terminal domain is involved in substrate binding. We elucidated the mode of cofactor binding to CgDapB by determining the crystal structure of the enzyme in complex with NADP+ and found that CgDapB utilizes both NADH and NADPH as cofactors. Moreover, we determined the substrate binding mode of the enzyme based on the coordination mode of two sulfate ions in our structure. Compared with Mycobacterium tuberculosis DapB in complex with its cofactor and inhibitor, we propose that the domain movement for active site constitution occurs when both cofactor and substrate bind to the enzyme.

$Interferon-{\Upsilon}$ and Lipopolysaccaride Induce Mouse Guanylate-Binding Protein 3 (mGBP3) Expression in the Murine Macrophage Cell Line RAW264-7

  • Han, Byung-Hee
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.130-136
    • /
    • 1999
  • Mouse guanylate-binding protein 3 (mGBP3) is a 71-kDa GTPase which belongs to GTP-binding protein family. The present study showed that the expression of mGBP3 transcript was readily induced in a dose dependent fashion in the macrophage cell line RAW264.7 treated with either $interferon-{\gamma} (IFN-\gamma)$ or lipopolysaccaride (LPS). The expression of mGBP3 protein was also apparent by 4 and 6 h after the treatment of cells with IFN-\gamma (100 U/ml) or LPS ($1{\mu}g/ml$) , and remained at palteau for at least 24 h. Cycloheximide ($10{\mu}g/ml$) had no effect on the $IFN-\gamma-$ or LPS-induced mGBP3 expression, suggesting that the mGBP3 induction did not require further protein synthesis. Interestingly, a protein kinase C (PKC) inhibitor staurosporine (50 nM) abolished the induction of mGBP3 expression by LPS, but not by $IFN-{\gamma}$. These findings suggest that mGBP3 may be involved in the macrophage activation process and both IFN-\gamma and LS induce the mGBP3 expression through distinct signal transduction pathways.

  • PDF

Effect of Calcium Antagonists on the Cardiac ${\beta}$-Adrenergic Receptors (칼슘 길항제가 심장 ${\beta}$-Adrenergic Receptors에 미치는 영향)

  • 이신웅;김정구
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • It has been known that calcium antagonists also inhibit the radioligand binding to muscarinic and $\alpha$-adrenergic receptors and, in case of verapamil, these inhibitions may play a role in the effects of verapamil on the heart. In this study, the effects of nicardipine, nifedipine, nimodipine, diltiazem and verapamil on the binding of [$^3H$]dihydroalprenolol (DHA) to dog cardiac ${\beta}$-adrenergic receptors were examined. A single uniform [$^3H$]DHA binding site ($K_D/= 5nM\;and\;B_{max}=2600$ fmol/mg protein) was identified in dog cardiac sarcolemma. [$^3H$]DHA binding was not affected by the usual therapeutic concentrations of these calcium antagonists (nanomolar range) but in the "nonspecific"concentration ranges ($28-180{\mu}m$) these drugs inhibited [$^3H$]DHA binding to $\beta$-adrenergic receptors. Nicardipine, nifedipine, nimodipine and diltiazem competed for [$^3H$]DHA binding to ${\beta}$-adrenergic receptors with dissociation constants ($K_i$) of $28{\mu}m,\' 74{\mu}m, 39{\mu}m \;and \;35{\mu}m,$ respectively. Verapamil ($K_i=176.5 {\mu}m$) was less potent inhibitor than other drugs and this inhibition was noncompetitive; the maximal binding capacity ($B_{max}$) $300 {\mu}m$ verapamil without change in the apparent dissociation constant (4K_D$) for DHA. These results indicate that the inhibitory action of calcium antagonists at high concentrations on ${\beta}$-adrenergic receptors is not involved in the therapeutic effects of these drugs by the calcium channel blocking action.

  • PDF

Development of ELISA System for Screening of Specific Binding Inhibitors for Src Homology (SH)2 Domain and Phosphotyrosine Interactions

  • Lee, Sang-Seop;Lee, Kyung-Im;Yoo, Ji-Yun;Jeong, Moon-Jin;Park, Young-Mee;Kwon, Byoung-Mog;Bae, Yun-Soo;Han, Mi-Young
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.537-543
    • /
    • 2001
  • In the present study, an in vitro ELISA system to assess the interaction between Src homology (SH)2 domains and phosphotyrosine that contain peptides was established using purified GST-conjugated SH2 proteins and synthetic biotinylated phosphotyrosine that contain oligopeptides. The SH2 domains bound the relevant phosphopeptides that were immobilized in the streptavidin-coated microtiter plate in a highly specific and dose-dependent manner. The epidermal growth factor receptor (EGFR)-, T antigen (T Ag)-, and platelet-derived growth factor receptor (PDGFR)-derived phosphopeptides interacted with the growth factor receptor binding protein (Grb)2/SH2, Lck/SH2, and phosphatidyl inositol 3-kinase (PI3K) p85/SH2, respectively. No cross-reactions were observed. Competitive inhibition experiments showed that a short phosphopeptide of only four amino acids was long enough to determine the binding specificity. Optimal concentrations of the GST-SH2 fusion protein and phosphopeptide in this new ELISA system for screening the binding blockers were chosen at 2nM and 500nM, respectively. When two candidate compounds were tested in our ELISA system, they specifically inhibited the Lck/SH2 and/or p85/SH2 binding to the relevant phosphopeptides. Our results indicate that this ELISA system could be used as an easy screening method for the discovery of specific binding blockers of protein-protein interactions via SH2 domains.

  • PDF