• Title/Summary/Keyword: Binding Potential

Search Result 936, Processing Time 0.024 seconds

A Capillary Electrochromatographic Microchip Packed with Self-Assembly Colloidal Carboxylic Silica Beads

  • Jeon, In-Sun;Kim, Shin-Seon;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1135-1140
    • /
    • 2012
  • An electrochromatographic microchip with carboxyl-group-derivatized mono-disperse silica packing was prepared from the corresponding colloidal silica solution by utilizing capillary action and self-assembly behavior. The silica beads in water were primed by the capillary action toward the ends of cross-patterned microchannel on a cyclic olefinic copolymer (COC) substrate. Slow evaporation of water at the front of packing promoted the self-assembled packing of the beads. After thermally binding a cover plate on the chip substrate, reservoirs for sample solutions were fabricated at the ends of the microchannel. The packing at the entrances of the microchannel was silver coated to fix utilizing an electroless silver-plating technique to prevent the erosion of the packed structure caused by the sudden switching of a high voltage DC power source. The electrochromatographic behavior of the microchip was explored and compared to that of the microchip with bare silica packing in basic borate buffer. Electrophoretic migration of Rhodamine B was dominant in the microchip with the carboxyl-derivatized silica packing that resulted in a migration approximated twice as fast, while the reversible adsorption was dominant in the bare silica-packed microchip. Not only the faster migration rates of the negatively charged FITC-derivatives of amino acids but also the different migration due to the charge interaction at the packing surface were observed. The electrochromatographic characteristics were studied in detail and compared with those of the bare silica packed microchip in terms of the packing material, the separation potential, pH of the running buffer, and also the separation channel length.

Azasugar-Containing Phosphorothioate Oligonucleotide (AZPSON) DBM-2198 Inhibits Human Immunodeficiency Virus Type 1 (HIV-1) Replication by Blocking HIV-1 gp120 without Affecting the V3 Region

  • Lee, Jinjoo;Byeon, Se Eun;Jung, Ju Yeol;Kang, Myeong-Ho;Park, Yu-Jin;Jung, Kyeong-Eun;Bae, Yong-Soo
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.122-129
    • /
    • 2015
  • DBM-2198, a six-membered azasugar nucleotide (6-AZN)-containing phosphorothioate (P = S) oligonucleotide (AZPSON), was described in our previous publication [Lee et al. (2005)] with regard to its antiviral activity against a broad spectrum of HIV-1 variants. This report describes the mechanisms underlying the anti-HIV-1 properties of DBM-2198. The LTR-mediated reporter assay indicated that the anti-HIV-1 activity of DBM-2198 is attributed to an extracellular mode of action rather than intracellular sequence-specific antisense activity. Nevertheless, the antiviral properties of DBM-2198 and other AZPSONs were highly restricted to HIV-1. Unlike other P = S oligonucleotides, DBM-2198 caused no host cell activation upon administration to cultures. HIV-1 that was pre-incubated with DBM-2198 did not show any infectivity towards host cells whereas host cells pre-incubated with DBM-2198 remained susceptible to HIV-1 infection, suggesting that DBM-2198 acts on the virus particle rather than cell surface molecules in the inhibition of HIV-1 infection. Competition assays for binding to HIV-1 envelope protein with anti-gp120 and anti-V3 antibodies revealed that DBM-2198 acts on the viral attachment site of HIV-1 gp120, but not on the V3 region. This report provides a better understanding of the antiviral mechanism of DBM-2198 and may contribute to the development of a potential therapeutic drug against a broad spectrum of HIV-1 variants.

Lipoteichoic Acid Isolated from Lactobacillus plantarum Inhibits Melanogenesis in B16F10 Mouse Melanoma Cells

  • Kim, Hye Rim;Kim, Hangeun;Jung, Bong Jun;You, Ga Eun;Jang, Soojin;Chung, Dae Kyun
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2015
  • Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria. Its effects on living organisms are different from those of lipopolysaccharide (LPS) found in Gram-negative bacteria. LTA contributes to immune regulatory effects including anti-aging. In this study, we showed that LTA isolated from Lactobacillus plantarum (pLTA) inhibited melanogenesis in B16F10 mouse melanoma cells. pLTA reduced the cellular activity of tyrosinase and the expression of tyrosinase family members in a dose-dependent manner. The expression of microphthalmia- associated transcription factor (MITF), a key factor in the synthesis of melanin, was also decreased by pLTA. Further, we showed that pLTA activated melanogenesis signaling, such as extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinse (PI3K)/AKT. In addition, the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and HuR, which are important RNA-binding proteins (RBPs), was reduced. pLTA likely degrades MITF via regulation of melanogenic signaling and RNA stability of melanogenic proteins, resulting in the reduction of melanin. Thus, our data suggest that pLTA has therapeutic potential for treating hyperpigmentation disorders and can also be used as a cosmetic whitening agent.

Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

  • Zhao, Hongying;Zhang, Jun;Shao, Haiyu;Liu, Jianwen;Jin, Mengran;Chen, Jinping;Huang, Yazeng
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • Transforming growth factor ${\beta}1$ $(TGF{\beta}1)/Smad4$ signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through $TGF{\beta}1/Smad4$ signaling. Here, we present that $TGF{\beta}1$ elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by $TGF{\beta}1$. The results of luciferase reporter experiments and ChIP assays demonstrated that $TGF{\beta}1$ promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the $TGF{\beta}1/Smad4$ pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the $TGF{\beta}1$-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that $TGF{\beta}1/Smad4$ signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

Antigen Excess in Free Light Chain Assay U sing the Hitachi 7600 P-module Automatic Chemistry Analyzer (Hitachi 7600 p-모듈을 이용한 유리형경쇄 정량검사의 항원과잉역 반응)

  • Cha, Kyong-Ho;Kim, Sung-Hee;Song, Chang-Un;Sim, Yang-Bo;Chae, Hyo-Jin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.4
    • /
    • pp.173-179
    • /
    • 2009
  • The analysis of serum free light chains (sFLCs) can improve the diagnosis and monitoring of multiple myeloma and other plasma cell dyscrasias. As with other immunoassays, sFLCstests are subject to potential antigen excess and heterophilic antibody interference. We describe 9 cases of sFLCs antigen excess in patients with multiple myeloma using the FreeliteTM Human Kappa and Lambda Free Kits (The Binding Site ltd., Birmingham, UK) and the Hitachi7600 P module turbidimetric system. A total of 1,247 consecutive samples from 250 patients with multiple myeloma were assayed for sFLCs from April to September, 2009. The samples were assayed using an initial dilution of 1 :5and subsequent dilutions of 1 :50 and 1: 100. The same samples were analyzed for the presence of monoclonal gammopathies using serum protein electrophoresis (SPE) and immunofixation electrophoresis (IFE). There were 9 samples (0.72%) of antigen excess with 3 cases of kappa (0.24%) and 6 cases of lambda (0.48%). These cases represents an example of antigen excess or "hook effect" using the serum free light chain assays and mandates high level of attention to falsely low sFLC levels due to antigen excess, especially when it is disaccordant to other assay results or clinical manifestations.

  • PDF

$Ca^{2+}-Substitutional$ Roles of Strontium for the Contractile Processes in the Rabbit Renal Artery (가토 신동맥 평활근에서 Strontium의 Calcium 대행역할)

  • Chang, Yun-Cheol;Jeon, Byeong-Hwa;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.281-291
    • /
    • 1990
  • The $Ca^{2+}-substitutional$ roles of strontium for the contractile processes were investigated in the rabbit renal artery. The contractions induced by either norepinephrine or high $K^+$ in the condition which intra- and extracellular $Ca^{2+}$ were replaced by $Sr^{2+}$, i.e. $Sr^{2+}-mediated$ contractions, were dose-dependent. And then the maximal amplitude of contraction, as compared with $Ca^{2+}-mediated$ contraction, was about 50% in norepinephrine and about 70% in high $K^+$. The $Sr^{2+}-mediated$ contractions were independent in the contraction by norepinephrine $(10^{-5}M)$ but dependent in those by high $K^+(100\;mM)$ on the extracellular $Sr^{2+}$ concentration. Also $Sr^{2+}-mediated$ contractions induced by norepinephrine were observed in the $Sr^{2+}-free$ Tyrode's solution. The $Sr^{2+}-mediated$ contractions induced by either norepinephrine or high $K^+$ were suppressed by verapamil, a $Ca^{2+}-channel$ blocker. By extracellular addition of $Sr^{2+}$, the $Ca^{2+}-mediated$ contractions induced by norepinephrine $(10^{-5}M)$ or 40 mM $K^+$ were inhibited but those by high $K^+(100\;mM)$ were increased. And the $Sr^{2+}-mediated$ contractions were increased by extracellular addition of $Ca^{2+}$ but did not reach the level of $Ca^{2+}-mediated$ contraction. Therfore it is suggested that in the vascular smooth muscle of rabbit renal artery $Sr^{2+}$ could enter the smooth muscle cells easily through the potential-operated calcium channel (POC) but not easily through the receptor-operated calcium channel (ROG), and $Sr^{2+}$ might be stored in the intracellular $Ca^{2+}-binding$ site and released by NE and induced the contraction by a way of activating directly the contractile apparatus.

  • PDF

Characterization and In Vitro Differentiation of Korean Ring-Necked Pheasant (Phasianus colchicus) Male Germ Cells

  • Jeong, Dong Kee;Sharma, Neelesh;Nguyen, Thanh Luan;Kim, Jong Hyun;Oh, Sung Jong
    • Journal of Embryo Transfer
    • /
    • v.29 no.4
    • /
    • pp.351-359
    • /
    • 2014
  • Phasianus colchicus is not only a beautiful bird but also a great value in science and under the threat of endanger. Hence, the aim of this study was to isolate the pheasant male germ cells (mGCs) and then induce them into elongated sperm-like cells in vitro. The mGCs were purified and enriched by a two-step plating method based on the different adherence velocities of mGCs and somatic cells. The percentage of the c-kit positive cells and c-kit negative cells examined by flow cytometry analysis (FCA) was 92.87% and 2.57%, respectively. Subsequently, the mGCs were induced for 48h in DMEM/F12 medium supplemented factors such as retinol acid, testosterone and bovine FSH, followed by 5 weeks in culture. We found that some elongated sperm-like cells appeared initially in vitro under inducement of stimulated factors. The elongated sperm-like cells showed in the expression of changed morphology and post-transcriptional marker such as spermatid associated (SPERT), spermatid perinuclear RNA binding protein (STRBP), round spermatid basic protein 1 (RSBN1) and SPER1L. Moreover, in DNA content identified assay, induced cells showed that the 1C DNA population markedly increased in differentiated group but it was not change in undifferentiated group. Successful in vitro differentiation of pheasant testicular germline cells into spermatids appears to offer extremely attractive potential for the conservation of endangered birds and treatment of male infertility.

Effect of Excess Calcium and Iron Supplement on Iron Bioavailability, Liver and Kidney Functions in Anemic Model Rats (칼슘과 철 보충제의 과다섭취가 빈혈모델 흰쥐의 체내 철 이용성 및 간과 신장기능에 미치는 영향)

  • 이종현;이연숙
    • Korean Journal of Community Nutrition
    • /
    • v.5 no.2
    • /
    • pp.243-252
    • /
    • 2000
  • This study examined the effects of excess intake of calcium(Ca) and iron(Fe) supplements on iron bioavailability, liver and kidney functions in anemic model rats. Seven-week-old female rats were first fed and Fe-deficient diet for ten weeks, and then fed one of nine experimental diets for an additional eight weeks, containing three levels of Ca, normal (0.5%) or high(1.5%) or excess (2.5%) and three levels of Fe, normal(35ppm) or high(210 ppm) or excess(350ppm). In anemic model rats, serum Fe, total iron binding capacity(TIBC), hemogolin(Hb), hematocrit(Hct) and liver Fe contents were significantly decreased. Apparent Fe absorption significantly increased with increasing dietary Fe levels, and decreased with increasing dietary Ca levels. serum Fe concentration significantly increased in rats fed a high- and excess-Fe diet, and decreased in rats fed a excess-Ca diet. TIBC was decreawed in rats fed a excess-Ca diet, and transferrin saturation(%) increased in rats fed ahigh- and excess-Fe diet. Hb and Hct were decreased in rats fed an excess-Ca diet regardless of dietary Fe levels. Fe and thiobarbituric acid reactin gsubstance(TBARS) Contents of liver significantly increased in rats fed a high- and excess0-Fe diet, and decreased in rats fed a high- and excess-Ca diet. Fe content of the spleen showed similar results. Urinary creatinine and GFR increased in rats fed an excess-Ca diet regardless of dietary Fe levels. GOT, GPT and LDH were not significantly affected by dietary Ca and Fe levels. These results suggest that excess intake of Fe may increase liver Fe deposits and TBARS, and excess intake of Ca may decrease Fe bioavailability and kidney function leading to potential health problems in anemic model rats.

  • PDF

Soluble Expression and Purification of the Catalytic Domain of Human Vascular Endothelial Growth Factor Receptor 2 in Escherichia coli

  • Wei, Jia;Cao, Xiaodan;Zhou, Shengmin;Chen, Chao;Yu, Haijun;Zhou, Yao;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1227-1233
    • /
    • 2015
  • Vascular endothelial growth factor (VEGF) plays a key role in angiogenesis through binding to its specific receptors, which mainly occurs to VEGF receptor 2 (VEGFR-2), a kinase insert domain-containing receptor. Therefore, the disruption of VEGFR-2 signaling provides a promising therapeutic approach for the treatment of cancer by inhibiting abnormal or tumorinduced angiogenesis. To explore this potential, we expressed the catalytic domain of VEGFR-2 (VEGFR-2-CD) as a soluble active kinase in Escherichia coli. The recombinant protein was purified and the VEGFR-2-CD activity was investigated. The obtained VEGFR-2-CD showed autophosphorylation activity and phosphate transfer activity comparable to the commercial enzyme. Furthermore, the IC50 value of known VEGFR-2 inhibitor was determined using the purified VEGFR-2-CD. These results indicated a possibility for functional and economical VEGFR-2-CD expression in E. coli to use for inhibitor screening.

Development of a Novel Short Synthetic Antibacterial Peptide Derived from the Swallowtail Butterfly Papilio xuthus Larvae

  • Kim, Seong Ryul;Choi, Kwang-Ho;Kim, Kee-Young;Kwon, Hye-Yong;Park, Seung-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1305-1309
    • /
    • 2020
  • Insects possess biological defense systems that can effectively combat the invasion of external microorganisms and viruses, thereby supporting their survival in diverse environments. Antimicrobial peptides (AMPs) represent a fast-acting weapon against invading pathogens, including various bacterial or fungal strains. A 37-residue antimicrobial peptide, papiliocin, derived from the swallowtail butterfly Papilio xuthus larvae, showed significant antimicrobial activities against several human pathogenic bacterial and fungal strains. Jelleines, isolated as novel antibacterial peptides from the Royal Jelly (RJ) of bees, exhibit broad-spectrum protection against microbial infections. In this study, we developed a novel antimicrobial peptide, PAJE (RWKIFKKPFKISIHL-NH2), which is a hybrid peptide prepared by combining 1-7 amino acid residues (RWKIFKK-NH2) of papiliocin and 1-8 amino acid residues (PFKISIHL-NH2) of Jelleine-1 to alter length, charge distribution, net charge, volume, amphipaticity, and improve bacterial membrane interactions. This novel peptide exhibited increased hydrophobicity and net positive charge for binding effectively to the negatively charged membrane. PAJE demonstrated antimicrobial activity against both gram-negative and gram-positive bacteria, with very low toxicity to eukaryotic cells and an inexpensive process of synthesis. Collectively, these findings suggest that this novel peptide possesses great potential as an antimicrobial agent.