• Title/Summary/Keyword: Binding Energy

Search Result 771, Processing Time 0.021 seconds

Sputtering of traget materials by the ion scattering monte carlo calculation (이온 산란 몬테칼로 계산에 의한 시료 물질의 스퍼터링)

  • 김영삼;이상석;김영권;최은하;조광섭
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.55-62
    • /
    • 1999
  • Monte Carlo ion scattering program is improved with the single scattering methods where the total cross section and the mean free path are calculated as a function of atomic density during ion scattering in matter. The relations among the parameters of incident ions and substrate materials are investigated to the sputtering phenomena. The sputtering yield has been analyzed with the dependence on the incident ion species and energy, incident angle, and surface binding energy. The energy distribution of sputtered particles is discussed.

  • PDF

Mechanisms of Cu(II) Sorption at Several Mineral/Water Interfaces: An EPR Study

  • Cho, Young-Hwan;Hyun, Sung-Pil;Pilsoo Hahn
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.72-72
    • /
    • 2002
  • In most traditional sorption study in environmental conditions, experimental sorption data have been measured and interpreted by empirical ways such as partition coefficient and sorption isotherms. A mechanistic understanding of heavy metal interactions with various minerals (metal oxides, clay minerals) in aqueous medium is required to describe the behavior of radioactive metal ions in the environment. Various spectroscopic methods provide direct or indirect information on sorption mechanisms involved. We applied EPR (Electron Paramagnetic Resonance) spectroscopy to investigate the nature of metal ion sorption at water/mineral interfaces using Cu(II) as a spin probe. The major sorbed species and their motional state was identified by their EPR spectra. They showed distinct signals due to their strength of binding, local structure and motional state. The EPR results together with macroscopic sorption data show that sorption involved at least three different mechanisms depending on chemical environments (1).

  • PDF

Conformational Study of Y-Base in Yeast tRNA$^{phe}$

  • Moon, Myung-Jun;Jhon, Mu-Shik;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.3
    • /
    • pp.133-139
    • /
    • 1983
  • To understand the importance of Y-base adjacent to the anticodon stabilizing codon-anticodon interaction, a study has been undertaken for the model compound involving the interaction between Y-base and anticodon as well as the participation of water molecule by calculating the conformational free energy using an empirical potential function. We restrict our analysis to sites directly associated with Y-base by varying only the backbone torsion angles of Y-base. The hydration and $Mg^{+2}$ binding effects on the conformational stability of Y-base are calculated and discussed. The free Y-base is proved to be less stable than the hydrated one. The free energy change due to the hydration of Y-base amounts to -119.5 kcal/mole, in which the conformational energy change is -142.4 kcal/mole and the configurational entropy change is -76.9 e. u. It is found that the water molecules bound to Y-base and $Mg^{+2}$ contribute to the conformation of Y-base dominantly.

The Importance of Thermodynamic Quantities for the Determination of the Unknown Conformation: Ab initio Studies of$ K^+(H_2O)_3$

  • 이한명;Son, Hyeon S.;민병진
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.345-351
    • /
    • 1999
  • The structures, the energetics, and the spectra of K+(H2O)3 have been studied at HF and MP2 levels with the basis set of triple-zeta plus two sets of polarization functions (TZ2P) for water molecules. Two structures considered are 3+0 (D3), and 2+1 (C2v). The 2+1 (C2v) has two hydrogen bonds between the primary hydration and the secondary hydration shell water molecules. They have similar binding energy and enthalpy. The most stable conformation of K+(H2O)3 is entropy driven as shown in Na+(H2O)5 and in Na+(H2O)6 cases. The 3+0 (D3) conformation is the most stable at 298 K and at 1 atm, based on Gibbs free energy changes (ΔGr). The thermal contributions to the enthalpy and the Gibbs free energy are corrected for the low frequency modes. The corrected ΔGr is in good agreement with the experimental value. Vibrational frequencies of two conformations are revealed as their characteristics.

A Mobility Management Scheme based on the Mobility Pattern of Mobile Networks (이동 네트워크의 이동 패턴에 기반을 둔 이동성 관리 기법)

  • Yang, Sun-Ok;Kim, Sung-Suk
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.4
    • /
    • pp.345-354
    • /
    • 2008
  • Recently, small-scale mobile network which is composed of many mobile devices in a man becomes popular. Also, Examples of large-scale mobile network can be thought access networks deployed on public transportation such as ships, trains and buses. To provide seamless mobility for mobile nodes in this mobile network, binding update messages must be exchanged frequently. However, it incurs network overhead increasingly and decreases energy efficiency of mobile router. If we try to reduce the number of the messages to cope with the problem, it may happen the security -related problems conversely Thus, mobile router needs a effective algorithm to update location information with low cost and to cover security problems. In this paper, mobility management scheme based on mobile router's mobility pattern is proposed. Whenever each mobile router leaves a visiting network, it records related information as moving log. And then it periodically computes mean resident time for all visited network, and saves them in the profile. If each mobile router moves into the visited network hereafter, the number of binding update messages can be reduced since current resident time may be expected based on the profile. At this time, of course, security problems can happen. The problems, however, are solved using key credit, which just sends some keys once. Through extensive experiments, bandwidth usages are measured to compare binding update messages in proposed scheme with that in existing scheme. From the results, we can reduce about 65% of mobility-management-related messages especially when mobile router stays more than 50 minutes in a network. Namely, the proposed scheme improves network usage and energy usage of mobile router by decreasing the number of messages and authorization procedure.

Changes in the Characteristics of Dissolved Organic Matter by Microbial Transformation and the Subsequent Effects on Copper Binding (생분해에 따른 용존 유기물질 성상 및 중금속 구리와의 결합특성 변화)

  • Jung, Ka-Young;Hur, Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • Microbial changes in the characteristics of dissolved organic matter (DOM) and the subsequent effects on the conditional stability constants of copper were investigated using 14 day-incubations of Pony Lake fulvic acid (PLFA), Suwannee River fulvic acid (SRFA) and the mixtures of the humic substances and glucose. After incubation, dissolved organic carbon (DOC) concentrations were diminished, and specific UV absorbance values and DOC-normalized fluorescence intensities increased. The microbial changes were minimal for the samples contaning humic substances only whereas they were much pronounced for the mixtures with glucose. The extent of the changes increased with a higher content of glucose in the mixtures. The same trend was observed even for glucose solution. Our results suggest that labile organic moieties may be transformed into more chromophoric and humidified components by biodegradation. For the mixture samples, the copper binding stability constants did not change or even decreased after incubation. Therefore, microbially induced enrichment of the fulvic- and humic-like carbon structures in DOM appears to result in little change or the decrease of the copper binding coefficients.

Development of Phosphorus-compound $CaSO_4$ : Dy(KCT-300) TL Pellets

  • Yang, Jeong-Seon;Kim, Doo-Young;Kim, Jang-Lyul;Lee, Jung-ll;Kim, Bong-Whan;Chang, Si-Young;Park, Jae-Woo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.142-145
    • /
    • 2002
  • CaSO$_4$:Dy thermoluminescence dosimeter (TLD) is widely used as a personal or environmental dosimeter because of its high sensitivity to radiation. There are many methods to make pellets from the TL phosphorss[l-5]. Sintered pellets were made from a mixture of CaSO$_4$:Dy phosphor and Teflon powder is the most common method. But this method has disadvantage that CaSO$_4$:Dy pellet does not have very high sensitivity because of large amounts of Teflon in Pellets. This Paper described development of a new type of CaSO$_4$:Dy pellets by using P- compounds as a bonding material (KCT-300), and compared the TL sensitivity with that of the commercialized Teledyne CaSO$_4$: Dy pellets. Sensitivity of a new developed KCT-300 shows about 6 times than Teledyne ones, and can be used to measure very low radiation dose.

Binding Properties of Alkali Metal Ions with DBPDA Ion Exchanger (알칼리 금속이온들과 DBPDA 이온교환체와의 결합특성)

  • Kim, Dong Won;Kim Chang Suk;Choi Ki Young;Jeon Young Shin
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.491-495
    • /
    • 1993
  • Synthesis of polymer-supported azacrown ether ion exchanger, {(4,5): (13,14)-dibenzo-6,9,12-trioxa-3,15,21-triazazabicyclo[15.3.1]heneicosa-1(21),17,19-triene-2,16-dione : DBPDA ion exchanger}, and its ion binding ability to alkali metal $(Li^+,\;Na^+,\;K^+)$ picrates were studied. The binding constants $(K_b)$ of DBPDA ion exchanger to the alkali metal picrates in ether type solvents were obtained by spectrophotometry. Binding constants of alkali metal ions were in the order to Li < Na < K, and alkali metal ions were formed 1 : 1 complexes with ligands of DBPDA ion exchanger. Also, $K_b$ was found to depend on the variables such as solvent and temperature. The binding constants for the complexes were obtained in the ranges of $2{\times}10^3{\sim}4{\times}10^4M^{-1}$. In order to obtain the enthalpy (${\Delta}$H) and entropy changes (${\Delta}$S)n the complexation process, Kb were plotted against the temperature in the ranges of 10∼40$^{\circ}C$ according to the van't Hoff theory. Enthalphy and entropy changes were found in the ranges of -2.71∼-3.79 kcal/mol, and -16.52∼-20.57 eu, respectively.

  • PDF

Substitution of Heavy Complementarity Determining Region 3 (CDR-H3) Residues Can Synergistically Enhance Functional Activity of Antibody and Its Binding Affinity to HER2 Antigen

  • Moon, Seung Kee;Park, So Ra;Park, Ami;Oh, Hyun Mi;Shin, Hyun Jung;Jeon, Eun Ju;Kim, Seiwhan;Park, Hyun June;Yeon, Young Joo;Yoo, Young Je
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.217-228
    • /
    • 2016
  • To generate a biobetter that has improved therapeutic activity, we constructed scFv libraries via random mutagenesis of several residues of CDR-H3 and -L3 of hu4D5. The scFv clones were isolated from the phage display libraries by stringent panning, and their antiproliferative activity against HER2-positive cancer cells was evaluated as a primary selection criterion. Consequently, we selected AH06 as a biobetter antibody that had a 7.2-fold increase in anti-proliferative activity ($IC_{50}$: 0.81 nM) against the gastric cancer cell line NCI-N87 and a 7.4-fold increase in binding affinity ($K_D$: 60 pM) to HER2 compared to hu4D5. The binding energy calculation and molecular modeling suggest that the substitution of residues of CDR-H3 to W98, F100c, A101 and L102 could stabilize binding of the antibody to HER2 and there could be direct hydrophobic interactions between the aromatic ring of W98 and the aliphatic group of I613 within HER2 domain IV as well as the heavy and light chain hydrophobic interactions by residues F100c, A101 and L102 of CDR-H3. Therefore, we speculate that two such interactions were exerted by the residues W98 and F100c. A101 and L102 may have a synergistic effect on the increase in the binding affinity to HER2. AH06 specifically binds to domain IV of HER2, and it decreased the phosphorylation level of HER2 and AKT. Above all, it highly increased the overall level of p27 compared to hu4D5 in the gastric cancer cell line NCIN82, suggesting that AH06 could potentially be a more efficient therapeutic agent than hu4D5.

Theoretical Investigation for the Molecular Structures and Dimerization Energies for Complexes of H2O-C6H6 Dimer (물(H2O)과 벤젠(C6H6) 이합체의 분자 구조 및 결합 에너지에 관한 이론 연구)

  • Sun, Ju-Yong;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.7-16
    • /
    • 2009
  • The global minimum structures of the benzene-water, Bz-$H_2O$ and benzene-water cation complex, [Bz-$H_2O]^+$ have been investigated using ab initio and density functional theory(DFT) with very large basis sets. The highest levels of theory employed in this study are B3LYP/cc-pVQZ for geometry optimization and MP2/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ for binding energy. The harmonic vibrational frequencies and IR intensities are also determined at the various levels of theory to confirm whether the structure of water complex is affected by the presence of benzene. The binding energies of Bz-$H_2O$ (N-1) structure are predicted to be 3.92 kcal/mol ($D_e$) and 3.11 kcal/mol ($D_0$) after the zero-point vibrational energy correction at the MP2/cc-pVQZ//B3LYP/cc-pVQZ level of theory. The binding energies of [Bz-$H_2O]^+$ (C-1) structure are predicted to be 9.06 kcal/mol for $D_e$ and 7.82 kcal/mol for $D_0$ at the same level of theory.