• Title/Summary/Keyword: Binder process

Search Result 506, Processing Time 0.027 seconds

A Study on the Resource Development by Heat Dissolution in Electric Arc Furnace of Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생된 Clinker의 전기로에서의 가열용해에 의한 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Akio Honjo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.22-32
    • /
    • 2023
  • In general, when scrap is dissolved in an electric arc furnace, the amount of electric furnace steel dust (EAFD) generated is about 1.5% of the scrap charge amount, and the electric furnace steel dust collected by the bag filter is charged into the Rotary Kiln or Rotary Hearth Furnace (RHF), and the zinc component is recovered as crude zinc oxide, at which time a clinker of Fe-Base is generated. In this research, first, for the efficient resource conversion of electric furnace steel dust, a reduction and roasting experiment was conducted and the reaction kinetics was examined. As a result of the experiment, it was observed that the reduction and roasting reaction was actively conducted in the range of 1100~1150℃, and melting occurred in the range of 1250℃. In the past, this clinker was widely used as a roadbed material for road construction and an Fe-Source for cement production, but in recent years, it has been mainly reclaimed due to strengthening environmental standards. However, landfill treatment is by no means a desirable treatment method due to environmental pollution caused by leachate, expensive landfill costs, and waste of Fe resources. Therefore, in order to more actively recycle the Fe component in the clinker, first of all the clinker was pulverized into an optimal particle size, and anthracite and binder (starch) were added to the magnetic material obtained by specific gravity and magnetic separation for briquet. As a experimental results, it was possible to efficiently separate clinker as Fe component and other slag component by specific gravity and magnetic force. As a results of loading and dissolving the manufactured briquet clinker in an electric arc furnace, it was observed that the unit of power and production yield were clearly improved and the carbon addition effect in molten metal was also somewhat.

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

Evaluating the Effectiveness of In-Situ Carbonation in Floor Dry Cement Mortar Applications (바닥용 건조시멘트 모르타르 배합 내 In-situ 탄산화 적용을 위한 CO2 주입 특성 및 물리적 특성 검토)

  • Kim, Jin-Sung;Cho, Sung-Hyun;Kim, Chun-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In-situ carbonation technology represents a form of mineral carbonation that integrates CO2 into the fabrication process of cementitious construction materials, capturing CO2 as calcium carbonate(CaCO3) through a reaction between calcium ions(Ca2+) and CO2 released during cement hydration. This investigation examines the application of in-situ carbonation technology to a variety of floor dry cement mortar formulations commonly used in local construction projects. It assesses the effects of varying the CO2 injection flow rate and total volume of CO2 injected. Additionally, the study evaluates the impact of reducing the quantity of cement used as a binder on the final product's quality.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification (SiO2-Al2O3-P2O5 (SAP) 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 2. SAP조성에 따른 안정화/고형화특성 변화)

  • Ahn, Soo-Na;Park, Hwan-Seo;Cho, In-Hak;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP ($SiO_2-Al_2O_3-P_2O_5$) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of $Fe_2O_3$ into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP( Fe=0.1). The experimental results indicated that the addition of $Fe_2O_3$ increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing $B_2O_3$ into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP ($SiO_2-Al_2O_3-Fe_2O_3-P_2O_5-B_2O_3$) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3~4 g of wasteform for final disposal. The final volume would be about 3~4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

Optimization of Characteristic Change due to Differences in the Electrode Mixing Method (전극 혼합 방식의 차이로 인한 특성 변화 최적화)

  • Jeong-Tae Kim;Carlos Tafara Mpupuni;Beom-Hui Lee;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cathode, which is one of the four major components of a lithium secondary battery, is an important component responsible for the energy density of the battery. The mixing process of active material, conductive material, and polymer binder is very essential in the commonly used wet manufacturing process of the cathode. However, in the case of mixing conditions of the cathode, since there is no systematic method, in most cases, differences in performance occur depending on the manufacturer. Therefore, LiMn2O4 (LMO) cathodes were prepared using a commonly used THINKY mixer and homogenizer to optimize the mixing method in the cathode slurry preparation step, and their characteristics were compared. Each mixing condition was performed at 2000 RPM and 7 min, and to determine only the difference in the mixing method during the manufacture of the cathode other experiment conditions (mixing time, material input order, etc.) were kept constant. Among the manufactured THINKY mixer LMO (TLMO) and homogenizer LMO (HLMO), HLMO has more uniform particle dispersion than TLMO, and thus shows higher adhesive strength. Also, the result of the electrochemical evaluation reveals that HLMO cathode showed improved performance with a more stable life cycle compared to TLMO. The initial discharge capacity retention rate of HLMO at 69 cycles was 88%, which is about 4.4 times higher than that of TLMO, and in the case of rate capability, HLMO exhibited a better capacity retention even at high C-rates of 10, 15, and 20 C and the capacity recovery at 1 C was higher than that of TLMO. It's postulated that the use of a homogenizer improves the characteristics of the slurry containing the active material, the conductive material, and the polymer binder creating an electrically conductive network formed by uniformly dispersing the conductive material suppressing its strong electrostatic properties thus avoiding aggregation. As a result, surface contact between the active material and the conductive material increases, electrons move more smoothly, changes in lattice volume during charging and discharging are more reversible and contact resistance between the active material and the conductive material is suppressed.

AN EXPERIMENTAL STUDY ON THE OSSEOINTEGRATION OF THE TI-6AL-4V BEAD COATING IMPLANTS (Ti-6Al-4V 비드코팅 임프란트 시제품의 골유착에 대한 실험적 연구)

  • Woo, Jin-Oh;Park, Bong-Wook;Byun, June-Ho;Kim, Seung-Eon;Kim, Gyoo-Cheon;Park, Bong-Soo;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • The geometric design of an implant surface may play an important role in affecting early osseointegration. It is well known that the porous surfaced implant had much benefits for the osseointegration and the early stability of implant. However, the porous surfaced implant had weakness from the transgingival contamitants, and it resulted in alveolar bone loss. The other problem identified with porous surface implant is the loss of physical properties resulting from the bead sintering process. In this study, we developed the new bead coating implant to overcome the disadvantages of porous surfaced implant. Ti-6Al-4V beads were supplied from STARMET (USA). The beads were prepared by a plasma rotating electrode process (PREP) and had a nearly spherical shape with a diameter of 75-150 ${\mu}m$. Two types of titanium implants were supplied by KJ Meditech (Korea). One is an external hexa system (External type) and the other is an internal system with threads (Internal type). The implants were pasted with beads using polyvinylalcohol solution as a binder, and then sintered at 1250 $^{\circ}C$ for 2 hours in vacuum of $10^{-5}$ torr. The resulting porous structure was 400-500 ${\mu}m$ thick and consisted of three to four bead layers bonded to each other and the implant. The pore size was in the range of 50-150 ${\mu}m$ and the porosity was 30-40 % in volume. The aim of this study was to evaluate the osseointegration of the newly developed dental implant. The experimental implants (n=16) were inserted in the unilateral femur of 4 mongrel dogs. All animals were killed at 8 weeks after implantation, and samples were harvested for hitological examination. All bead coated porous implants were successfully osseointegrated with peripheral bone. The average bone-implant contact ratios were 84.6 % (External type) and 81.5 % (Internal type). In the modified Goldner's trichrome staining, new generated mature bones were observed at the implant interface at 8 weeks after implantation. Although, further studies are required, we could conclude that the newly developed vacuum sintered Ti-6Al-4V bead coating implant was strong enough to resist the implant insertion force, and it was easily osseointegrated with peripheral bone.

Effect of Refinement of Fly Ash on Engineering Properties of Cement Mortar (플라이애시의 정제가 모르타르의 공학적 특성에 미치는 영향)

  • Han, Min-Cheol;Moon, Byeong-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.275-281
    • /
    • 2017
  • This study is to investigate experimentally the effect of refining of fly ash (FA) on the engineering properties of the cement mortar. Five different FAs are used including raw fly ash, refined fly ash, reject ash and their two different combinations. The cement mortars are fabricated with 1:1(binder to fine aggregate), 1 : 3 and 1 : 5 respectively, which are replaced 30% of FA by cement. Test results, indicated that, the flow of Ra showed lower flowability than Rf at all mixing ratios. Also in the case of Rj, it was expected to show low fluidity, but it showed flowability equal to or higher than Rf. Air contents are all formulations except Rf and Rj did not satisfy the target range. Using Ra, the refining process shows an air amount about 41% lower than Rf, in the case of Rj, it showed about 19% higher air content than Rf due to porous foreign matters inside the mortar. Compressive strength was in the early days 3 and 7, the strength was lower than that of Plain's OPC, after 28 days Rf exerts higher strength than other FAs, it was confirmed that higher strength than OPC can be secured at a mixing ratio of 1: 1 and 1: 3. For frost resistance, the use of unrefined FA resulted in decrease of frost resistance sharply due to loss of air content by the use of unrefined FA. Therefore, it is considered that the use of high quality FA through refining process will contribute positively to the economical formulation of concrete and the stability of the structure.

Properties of Light-weight Expanded Bonded Leather Using Thermal Expandable Microspheres (열 팽창성 Microsphere를 적용한 경량 발포 재생피혁 특성 분석)

  • Shin, Eun-Chul;Kim, Won-Ju;Kim, Yeong-Woo
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.81-85
    • /
    • 2020
  • Shaving dust is a collagen fiber that is the leather waste occurred for thickness adjustment during the natural leather manufacturing process, and causes problems such as an environmental contamination because of a chromium (Cr) contained when it comes to reclaiming process. Various studies applying the shaving dust are currently being conducted in many countries across the world with an initiative by the EU. Of those applications, the bonded leather is being highlighted as a substitute for natural leather. Since the bonded leather, however, uses latex as a binder, accordingly it entails a high weight and a poor ventilation, which are deemed as disadvantages due to its dense internal tissues compared to other synthetic leathers. To address such disadvantages, this study employed the thermally expandable micro sphere to improve its air permeability and light weight by alleviating the internal structure. This is a study on the manufacturing of light bonded leather using the shaving dusts. In the study, the shaving dusts were forced to foam under 100~120℃ considering the heat resistance of collagen fiber after applying the thermally expandable micro sphere, and then the tendency was analyzed. In the analysis results, the most excellent foaming rate was exhibited when the shaving dusts were treated under 120℃ for 8 minutes and the variation of internal structure according to a foaming was observed through SEM analysis for the cross-section of the bonded leather.

Material Retention: A Novel Approach to Performance of Pigment Coating Colors (물질 보류 : 안료 코팅 처리를 위한 새로운 시도)

  • McKenzie, Ken;Rutanen, Anne;Lehtovuori, Jukka;Ahtikari, Jaana;Piilola, Teuvo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.47-70
    • /
    • 2008
  • Cost efficiency is today the primary requirement in the paper and board industry. This has led therefore, to a greater preponderance of products with specifically designed functionality to take account of current industry needs. Continually increasing machine coating speeds together with these new coating colour components have put more emphasis on the importance of the correct rheology and water retention of the coating colours to achieve good runnability and end product quality. In the coating process, some penetration of the aqueous phase, to the base paper or board must occur to anchor the pre-coating to the base or the topcoat to the pre-coat. The aqueous phase acts as a vehicle not only for the binder, but also for the other components. If this water or material penetration is not controlled, there will be excessive material shift from the coating colour to the base, before immobilization of the coating colour will stop this migration. This can result in poor machine runnability, unstable system and uneven coating layer, impacting print quality. The performance of rheology modifiers or thickeners on the coating color have tended to be evaluated by the term, "water retention". This simple term is not sufficient to explain their performance changes during coating. In this paper we are introducing a new concept of "material retention", which takes note of the total composition of the coating colour material and therefore goes beyond the concept of only water retention. Controlled material retention leads to a more uniform z-directional distribution of coating colour components. The changes that can be made to z-directional uniformity will have positive effects on print quality as measured by surface strength, ink setting properties, print gloss, mottling tendency. Optical properties, such as light scattering, whiteness and light fastness delivery should also be improved. Additionally, controlled material retention minimizes changes to the coating colour with time in re-circulation giving less fluctuation in quality in the machine direction since it more closely resembles fresh coating for longer periods. Use of the material retention concept enables paper and board producers to have more stable runnability (i.e. lower process costs), improved end product quality (i.e. better performance of used chemicals) and/or optimized use of coating colour components (i.e. lower total formulation cost)

  • PDF

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag (전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구)

  • Kim, Ji-Seok;Park, Eon-Sang;Ann, Ki-Yong;Cho, Won-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.152-160
    • /
    • 2021
  • Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.