• 제목/요약/키워드: Binder combination

검색결과 87건 처리시간 0.03초

팽창재와 수축저감제를 사용한 고성능 콘크리트의 수축 특성 (Shrinkage Properties of High Performance Concrete Used Expansive Additive and Shrinkage Reducing Agent)

  • 고경택;박정준;류금성;강수태
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.787-794
    • /
    • 2006
  • 고성능 콘크리트는 물-결합재비를 작게 하고, 단위결합재량을 다량으로 사용하므로 콘크리트의 수화열 및 자기수축이 증대되는 경향이 있다. 본 연구에서는 고성능 콘크리트의 수축저감 기술을 구축하는 연구의 일환으로 팽창재와 수축저감제 사용이 고성능 콘크리트의 수축특성에 미치는 영향을 검토하였다. 그 결과, 팽창쟁와 수축저감제는 고성능 콘크리트의 수축을 저감시키는 데 효과가 뛰어나며, 특히 팽창재와 수축저감제를 조합하여 사용할 경우, 각각 단독으로 사용하는 경우보다는 수축 저감 효과가 큰 것으로 확인되었다. 또한 시공성, 강도 및 수축특성을 종합적으로 고려하여 팽창재 5.0%와 수축저감제 1.0%의 조합이 적정배합으로 분석되었다.

Effect of curing condition on strength of geopolymer concrete

  • Patil, Amol A.;Chore, H.S.;Dodeb, P.A.
    • Advances in concrete construction
    • /
    • 제2권1호
    • /
    • pp.29-37
    • /
    • 2014
  • Increasing emphasis on energy conservation and environmental protection has led to the investigation of the alternatives to customary building materials. Some of the significant goals behind understaking such investigations are to reduce the greenhouse gasemissions and minimize the energy required formaterial production.The usage of concrete around the world is second only to water. Ordinary Portland Cement (OPC) is conventionally used as the primary binder to produce concrete. The cement production is a significant industrial activity in terms of its volume and contribution to greenhouse gas emission. Globally, the production of cement contributes at least 5 to 7 % of $CO_2$. Another major problem of the environment is to dispose off the fly ash, a hazardous waste material, which is produced by thermal power plant by combustion of coal in power generation processes. The geopolymer concrete aims at utilizing the maximum amount of fly ash and reduce $CO_2$ emission in atmosphere by avoiding use of cement to making concrete. This paper reports an experimental work conducted to investigate the effect of curing conditions on the compressive strength of geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator.

Cost effective optimal mix proportioning of high strength self compacting concrete using response surface methodology

  • Khan, Asaduzzaman;Do, Jeongyun;Kim, Dookie
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.629-638
    • /
    • 2016
  • Optimization of the concrete mixture design is a process of search for a mixture for which the sum of the cost of the ingredients is the lowest, yet satisfying the required performance of concrete. In this study, a statistical model was carried out to model a cost effective optimal mix proportioning of high strength self-compacting concrete (HSSCC) using the Response Surface Methodology (RSM). The effect of five key mixture parameters such as water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content on the properties and performance of HSSCC like compressive strength, passing ability, segregation resistance and manufacturing cost were investigated. To demonstrate the responses of model in quadratic manner Central Composite Design (CCD) was chosen. The statistical model showed the adjusted correlation coefficient R2adj values were 92.55%, 93.49%, 92.33%, and 100% for each performance which establish the adequacy of the model. The optimum combination was determined to be $439.4kg/m^3$ cement content, 35.5% W/B ratio, 50.0% fine aggregate, $49.85kg/m^3$ fly ash, and $7.76kg/m^3$ superplasticizer within the interest region using desirability function. Finally, it is concluded that multiobjective optimization method based on desirability function of the proposed response model offers an efficient approach regarding the HSSCC mixture optimization.

WC/Ni-Si 초경합금의 기계적 성질에 미치는 B4C의 영향 (Effect of Added B4C on the Mechanical Properties of WC/Ni-Si Hardmetal)

  • 이길근;하국현
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.366-370
    • /
    • 2013
  • The effects of $B_4C$ on the mechanical properties of WC/Ni-Si hardmetal were analyzed using sintered bodies comprising WC(70-x wt.%), Ni (28.5 wt.%), Si (1.5 wt.%), and $B_4C$ (x wt.%), where $$0{\leq_-}x{\leq_-}1.2$$ wt.%. Samples were prepared by a combination of mechanical milling and liquid-phase sintering. Phase and microstructure characterizations were conducted using X-ray diffractometry, scanning electron microscopy, and electron probe X-ray micro analysis. The mechanical properties of the sintered bodies were evaluated by measuring their hardness and transverse rupture strength. The addition of $B_4C$ improved the sinterability of the hardmetals. With increasing $B_4C$ content, their hardness increased, but their transverse rupture strength decreased. The changes of sinterability and mechanical properties were attributed to the alloying reaction between $B_4C$ and the binder metal (Ni, Si).

나노 Fe 분말을 이용하여 사출 성형된 Fe 소결체의 제조 (Fabrication of Injection Molded Fe Sintered Bodies Using Nano Fe Powder)

  • 김기현;임재균;최철진;이병택
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.795-801
    • /
    • 2004
  • The injection molded Fe sintered bodies were fabricated using two kinds of Fe powders haying 50 nm and $3\sim5{\mu}m$ in diameter. In the using of Fe powder having 50 nm in diameter, the comparatively dense bodies ($94\sim97\%$) were obtained even at low sintering temperature ($600\sim700^{\circ}C$), while in the sintered bodies ($1000^{\circ}C$) using $3\sim5{\mu}m$ Fe powder, their relative densities showed low values about $93\%$, although they were strongly depend on the sintering temperature and volume ratio of Fe powder and binder. In the sintered bodies using of 50 nm Fe powders, the volume shrinkage and grain size increased as the sintering temperature increased, but the values of hardness decreased. In the sample sintered at $650^{\circ}C$, the values of relative density, volume shrinkage and grain size were $96\%,\;37\%\;and\;0.97{\mu}n$, respectively and the minimum value of wear depth was obtained due to combination of fine grain and comparatively high density.

고온 수전해 전해질 막의 열안정화 특성 고찰 (The thermal stabilization characteristics of electrolyte membrane in high temperature electrolysis[HTE])

  • 최호상;손효석;심규성;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.150-158
    • /
    • 2005
  • Added ratio of 8YSZ powder and organic compounds (solvent, plasticizer, dispersant, binder) properly. It manufactured electrolysis membrane by wet process that make slurry and dry process that do not use organic compounds. In the case of wet process, harmony combination and method of organic compound are an importance element in slurry manufacture. This slurry did calcine at temperature of 140$^{\circ}C$ in Furnace and manufactured electrolyte disk by Dry pressing method. Like this, manufacturing disk sintered at temperature of $1300^{\circ}C,\;1400^{\circ},\;1500^{\circ}C$ in Furnace and completed electrolysis membrane. Confirmed change of crystal structure and decision form through analysis of density, SEM, XRD according to change of sintering temperature, and considered relation with ion conductivity.

용탕 침투법을 이용한 복합 삽입 금속의 제조 (Fabrication of Composite Filler Metal by Melt Infiltration)

  • 박흥일;김지태;김우열
    • 한국주조공학회지
    • /
    • 제23권5호
    • /
    • pp.244-250
    • /
    • 2003
  • The aim of this study is fabricating of composite filler metal (CFM) by a combination of selective laser sintering (SLS) of stainless steel powders (RapidSteel $2.0^{TM}$ and liquid phase infiltration of Ag-28 wt.%Cu alloy. Porous stainless steel body with inter-connected pore channels was fabricated by SLS, binder decomposing and densification processes. By the direct contact infiltration, the narrow inter-particle channels of the porous body were completely filled with the Ag-28 wt.%Cu alloy infiltrant. During infiltration, the dissolved elements of Fe, Ni and Cr from the porous body were solved into copper solid solution phases, which consist of eutectic structure of composite metal matrix. The S10C/CFM/S10C joints, which have narrow clearance gaps between them up to 10 micrometers, were joined successfully by self-feeding of filler metal from the matrix of CFM. The CFM kept its original thickness and microstructure after brazing. The tensile strength of brazed specimen was higher than 30 kgf/$mm^2$ and showed a typical ductile fracture mode in the CFM.

3D porous ceramic scaffolds prepared by the combination of bone cement reaction and rapid prototyping system

  • 윤희숙;박의균;임지원
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.56.2-56.2
    • /
    • 2012
  • Clinically-favored materials for bone regeneration are mainly based on bioceramics due to their chemical similarity to the mineral phase of bone. A successful scaffold in bone regeneration should have a 3D interconnected pore structure with the proper biodegradability, biocompatibility, bioactivity, and mechanical property. The pore architecture and mechanical properties mainly dependent on the fabrication process. Bioceramics scaffolds are fabricated by polymer sponge method, freeze drying, and melt molding process in general. However, these typical processes have some shortcomings in both the structure and interconnectivity of pores and in controlling the mechanical stability. To overcome this limitation, the rapid prototyping (RP) technique have newly proposed. Researchers have suggested RP system in fabricating bioceramics scaffolds for bone tissue regeneration using selective laser sintering, powder printing with an organic binder to form green bodies prior to sintering. Meanwhile, sintering process in high temperature leads to bad cost performance, unexpected crystallization, unstable mechanical property, and low bio-functional performance. The development of RP process without high thermal treatment is especially important to enhance biofunctional performance of scaffold. The purpose of this study is development of new process to fabricate ceramic scaffold at room temperature. The structural properties of the scaffolds were analyzed by XRD, FE-SEM and TEM studies. The biological performance of the scaffolds was also evaluated by monitoring the cellular activity.

  • PDF

3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성 (The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature)

  • 장칩도르지;소형석;이제방;소승영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

광변색 회절 이미지 형성을 위한 트라이아진계 메타아크릴레이트 모노머를 포함한 광고분자 필름의 특성평가 (Characterization of Photopolymers films containing triazine methacrylate monomer for photochromic diffractive image formation)

  • 오현진;이지예;김은경
    • 정보저장시스템학회논문집
    • /
    • 제3권4호
    • /
    • pp.173-177
    • /
    • 2007
  • A photo-reactive methacrylate monomer having triazine as a core component was examined for photochromic diffractive image formation. Photochromic photopolymer films as a recording media contained a monomer mixture of triazine difunctional metharylate (DT) and ethylene glycol phenyl ether acrylate, binder polymer, photo initiator, and a photochromic spiro-oxazine dye. The content of photochromic dye was changed to examine the effect of photochromophore on diffraction efficiency and real holographic image formation. Holographic recording was performed on the photopolymer film by the combination of reference and probe beam. The diffraction efficiency of the photopolymer film in real-time measurement reached a maximum of $\sim90%$ within 30s. It was highly dependent on the photochromophore contents. After holographic recording, the color of the recorded area was changed under UV light (365 nm) and reversibly bleached to original color upon exposure to a visible light source. Films containing only photochromophore without monomer mixture were not reactive under the recording beam (491nm). Diffractive image formation and mechanism of the holographic recording in the presence of photochromophore will be presented.

  • PDF