• Title/Summary/Keyword: Binary refrigeration

Search Result 38, Processing Time 0.022 seconds

An Enthalpy Model for the Solidification of Binary Mixture (엔탈피방법을 적용한 이원용액의 응고과정 해석 방법)

  • Yoo, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.35-43
    • /
    • 1993
  • A numerical model for the solidification of binary mixture is proposed. Numerical model, which employs enthalpy method, is modified from Continuum model, that is, improved relation is proposed for the Enthalpy - Temperature - Concentration - Liquid Mass Fraction. One dimensional example was selected to verify the proposed model. The results show that the new relation can be applied successfully to the solidification or melting of binary mixture.

  • PDF

Design of an Ammonia/water Bubble Absorber with Binary Nanofluids (이성분 나노유체를 이용한 암모니아/물 기포 흡수기 설계)

  • Kim Jin-Kyeong;Kim Sung-Soo;Kang Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.556-562
    • /
    • 2006
  • The objectives of this paper are to analyze simultaneous heat and mass transfer performance for a plate type bubble absorber with binary nanofluids numerically and to investigate the effects of binary nanofluids and surfactants on the size of the bubble absorber. The effective absorption ratio represents the effect of binary nanofluids and surfactants on the absorption performance. The kinds and concentrations of nano-particles and surfactants are considered as the key parameters. The results show that the addition of surfactants can reduce the size of absorber up to 74.4%, the application of binary nanofluids does the size up to 63.6%. Combination of binary nanofluids and surfactants can reduce the size of absorber up to 77.4%.

Optimal design of binary current leads cooled by cryogenic refrigerator (극저온 냉동기로 냉각되는 이중전류도입선의 최적설계)

  • Song, S.J.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.552-560
    • /
    • 1997
  • Analysis is performed to determine the optimal lengths or cross-sectional areas of refrigerator-cooled current leads that can be applied to the conduction-cooled superconducting systems. The binary current lead is composed of the series combination of a normal metal at the upper(warm) part and a high $T_c$ superconductor(HTS) at the lower(cold) part. The heat conduction toward the cold end of HTS part constitutes a major refrigeration load. In addition, the joint between the parts should be cooled by a refrigerator in order to reduce the load at the low end and maintain the HTS part in a superconducting state. The sum of the work inputs required for the two refrigeration loads needs to be minimized for an optimal operation. In this design, three simple models that depict the refrigeration performance as functions of cooling temperature are developed based on some of the existing refrigerators. By solving one-dimensional conduction equation that take into account the temperature-dependent properties of the materials, the refrigeration works are numerically calculated for various values of the joint temperature and the sizes of two parts. The results show that for given size of HTS, there exist the optimal values for the joint temperature and the size of the normal metal. It is also found that the refrigeration work decreases as the length of HTS increases and that the optimal size of normal metal is quite independent of the size of HTS. For a given length of HTS, there is an optimal cross-sectional area and it increases as the length increases. The dependence of the optimal sizes on the refrigerator models employed are presented for 1kA leads.

  • PDF

Thermal Analysis of a Combined Absorption Cycle of Cogeneration of Power and Cooling for Use of Low Temperature Source (저온 열원의 활용을 위한 흡수 발전/냉각 복합 사이클의 열적 해석)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.413-420
    • /
    • 2011
  • Thermodynamic cycles using binary mixtures as working fluids offer a high potential for utilization of low-temperature heat sources. This paper presents a thermodynamic performance analysis of Goswami cycle which was recently suggested to produce power and cooling simultaneously and combines the Rankine cycle and absorption refrigeration cycle by using ammoniawater mixture as working fluid. Effects of the system parameters such as concentration of ammonia and turbine inlet pressure on the system are parametrically investigated. Results show that refrigeration capacity or thermal efficiency has an optimum value with respect to ammonia concentration as well as to turbine inlet pressure.

Droplet Size and Thermal conductivity Measurements of Binary Nanoemulsion (이성분 나노에멀전의 입도 및 열전도도 측정)

  • Cho, Chang-Hwan;Sul, Hea-Youn;Jung, Jung-Yeul;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.815-820
    • /
    • 2009
  • Binary nanoemulsions which are defined as the, oil-droplet suspensions in binary solution ($H_2O$/LiBr), are developed to enhance the heat and mass transfer performance of absorption refrigeration systems. In this study, a novel two-step method is proposed to prepare the stable oil-in-binary solution (O/S) emulsion. Polymer is used as a steric stabilizer to stabilize the oil-droplets in a strong electrolyte ($H_2O$/LiBr). It is found that the thermal conductivity of the binary nanoemulsion is inversely proportional to the emulsion size while the concentrations of oil and $H_2O$/LiBr are less dominant for the thermal conductivity of binary nanoemulsions.

  • PDF

Soret effect on the convective instability in binary nanofluids (Soret 효과를 고려한 이성분 나노유체에서의 대류 불안정성 해석)

  • Kim Jake;Jung Chung Woo;Kang Yong Tae;Choi Chang Kyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.256-261
    • /
    • 2005
  • The objective of the present study is to study the Soret effect of both nanoparticles and solute on the convective instabilities in binary nanofluids. A new stability criterion is obtained based on the linear stability theory. The results show that the Soret effect of solute(${\psi}_{bf}$) makes the binary nanofluids unstable significantly and the convective motion in a binary nanofluid sets in easily as the ratio of Soret coefficient of nanofluid to that of binary basefluid ${\delta}_4$ increases for ${\delta}_4$ > -1. It is also found that as an increase of the volume fraction of nanoparticles, nanofluid becomes stable but at a separation ratio of ${\psi}=-0.3$ the state of fluid changes from stable to unstable.

A Study on the Cold Energy for Liquefied Nitrogen Gas and Cascade Refrigeration System (액화질소 초저온과 이원냉동 초저온 냉열의 비교 실험적 연구)

  • Kim, C.S.;Jang, H.S.;Jeong, H.M;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.56-62
    • /
    • 2007
  • This paper represents the cold energy for liquefied nitrogen gas and cascade refrigerator. In this study, the vaporizer of liquefied nitrogen gas has the fin coil tube type with the dimension of inside diameter of 10mm and outside diameter of 12mm. Also, the total length of vaporizer is 20,000mm. The main experimental parameters are the mean velocity in duct and the supplied flow-rates of liquefied nitrogen gas. For the cascade refrigeration system, the refrigerants are ethane(R 170) in the high pressure stage and R 22 in the low pressure stage.

  • PDF

Investigation of vapor-liquid equilibrium of HFC125/134a system (HFC125/134a계의 기-액상평형에 관한 연구)

  • 김창년;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.238-250
    • /
    • 1998
  • Vapor-liquid equilibrium apparatus is designed and set up. The vapor-liquid equilibrium data of the binary system HFC125/134a are measured in the range between 268.15 and 283.15K at five compositions. Twenty-five equilibrium data are obtained. To verify consistency of these data, they are tested for thermodynamic consistency. Based upon the present data, the binary interaction parameter for CSD and RKS equation of state is calculated at five isotherms and comparison with the data in the open literatures is made. Results of Nagel and Bier are in very good agreements with those from this study within 0.32∼1.11% for bubble point pressure and -0.66∼0.18% for vapor mole fraction.

  • PDF

A Numerical Study on the Solidification of Binary Mixture with Double-diffusive Convection in the Liquid (복합대류가 이원용액의 응고과정에 미치는 영향에 관한 수치적 연구)

  • Yoo, J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.111-121
    • /
    • 1993
  • Double-diffusive convection during solidification process of the binary mixture was studied numerically. Enthalpy method and finite element method were implemented in the analysis. Calculation carried out for $R{\alpha}_T=10^3-10^4$ and $R{\alpha}_T=0-10^5$. The results show that the variation of thermal Rayleigh number changes the fields of velocity, temperature and concentration, but the variation of solutal Rayleigh number gives little effects on those. In conclusion, concentration gradient can be negligible compared with temperature gradient in macroscopic point of view, although concentration gradient plays a role in forming dendrite.

  • PDF

Investigation of vapor-liquid equilibrium of HFC32/134a system (HFC32/134a 계의 기-액상평형에 관한 연구)

  • Kim, C.N.;Park, Y.M.;Lee, B.K.;An, B.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.527-535
    • /
    • 1997
  • Vapor-liquid equilibrium apparatus is designed and set up. The vapor-liquid equilibrium data of the binary system HFC32/134a are measured in the range between 258.15 and 283.15K at compositions of 0.2, 0.4, 0.6 and 0.8 mole fraction of HFC32. Twenty-two equilibrium data are obtained. Based upon the present data, the binary interaction parameter for Carnahan-Starling-De Santis equation of state is calculated. Temperature range of data is extended to 313.04K using the data in the open literatures. Interaction parameters are determined at nine isotherms.

  • PDF