• Title/Summary/Keyword: Binary mixture

검색결과 364건 처리시간 0.029초

전기화학적 중합온도가 Binary 도핑된 키랄 Polyaniline 모폴로지에 미치는 영향 (Influence of Electrochemical Polymerization Temperature on the Morphology of Binary-doped Chiral Polyaniline)

  • 김은옥;김영환
    • 대한화학회지
    • /
    • 제58권5호
    • /
    • pp.456-462
    • /
    • 2014
  • (+)-Camphorsulfonic acid (CSA)와 hydrochloric acid (HCl)로 binary 도핑된 키랄 polyaniline (PAni)을 중합온도 $0^{\circ}C$와 상온(RT)에서 전기화학적 중합법으로 합성하였다. 순환전압전류 곡선, FT-IR과 circular dichroism spectra로부터 PAni는 각각 (+)-CSA와 HCl로 single 도핑된 PAni 혼합물이 아닌, binary 도핑된 키랄 PAni임을 확인하였다. 중합온도가 전기화학적 거동과 도핑레벨에 영향을 주었고, 이에 따라서 PAni의 결정성과 모폴로지가 변화되는 것을 확인하였다. 중합온도가 $0^{\circ}C$에서 RT로 상승됨에 따라 키랄PAni의 모폴로지가 fibrous에서 short-fibrous구조로 변화되었다. ITO 위에 적층된 PAni필름의 면저항을 4-point probe 법으로 측정하였다.

Acute toxicity of four alkylphenols (3-tert-butyl-, 2-isopropyl-, 3-propropyl-, and 4-isopropyl-phenol) and their binary mixtures to Microtox, with comparisons to Ceriodaphnia dubia and Pimephales promelas

  • Park, Kyungho;Leonard I. Sweet;Brian E. Olseski;Peter G. Meier
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.158-161
    • /
    • 2003
  • Toxicity evaluations of 3-tert-butyl-, 2-isopropyl-, 3-isopropyl- and 4-propyl-phenol and their binary mixtures were performed with the Microtox$\^$(R) / assay and compared to invertebrates and fish. The single chemical, 4-isopropylphenol, exhibited the greatest relative toxicity to the Microtox organism (Vibrio fischeri). The relative electrophilicity (LUMO) of the phenols, in contrast to the lipophilicity (Log P), was strongly correlated with toxicity to V fischeri (r$^2$=0.96, p<0.01). In contrast, relative electrophilicity alone could not explain variances in toxicity of the phenols to Ceriodaphnia dubia. Results suggest that electrophilicity in conjunction with lipophilicity provide better correlation with toxicity to C. dubia and Pimephales promelas. Microtox results from the binary mixture toxicity tests of selected phenolics indicate a mechanism of interaction governed by suppression/antagonism.

  • PDF

다공성 물질이 충전된 정방형 밀폐용기 내에서 수용성 혼합용액의 동결거동에 관한 실험적 연구 (Experimental Study on the freezing of Aqueous Binary Solution Saturated Packed bed in a Square Cavity)

  • 최주열;김병철
    • 설비공학논문집
    • /
    • 제4권3호
    • /
    • pp.175-182
    • /
    • 1992
  • Freezing of the binary solution ($H_2O-NaCl$) saturating a packed bed of spheres is investigated experimentally. The system is cooled through its top surface, and the bottom is maintained at a temperature above the liquidus. Experiments are performed on the hypolutectic side, and the cold wall temperature is lower than the eutectic point. The effects of initial mixture concentration, superheat and glass bead diameter on temperature and concentration distributions are investigated. Supercooling was observed only at early times of the freezing process for experiments with 5% initial salt concentration. Flow visualization experiments and mushy-liquid interface position observations revealed natural convection in the liquid region. Remelting phenomena was not observed at both the solid-mushy and mushy-liquid interfaces.

  • PDF

Simultaneous Extraction and Separation of Oil and Azadirachtin from Seeds and Leaves of Azadirachta indica using Binary Solvent Extraction

  • Subramanian, Sheela;Salleh, Aiza Syuhaniz;Bachmann, Robert Thomas;Hossain, Md. Sohrab
    • Natural Product Sciences
    • /
    • 제25권2호
    • /
    • pp.150-156
    • /
    • 2019
  • Conventional extraction of oil and azadirachtin, a botanical insecticide, from Azadirachta indica involves defatting the seeds and leaves using hexane followed by azadirachtin extraction with a polar solvent. In order to simplify the process while maintaining the yield we explored a binary extraction approach using Soxhlet extraction device and hexane and ethanol as non-polar and polar solvents at various ratios and extraction times. The highest oil and azadirachtin yields were obtained at 6 h extraction time using a 50:50 solvent mixture for both neem leaves (44.7 wt%, $720mg_{Aza}/kg_{leaves}$) and seeds (53.5 wt%, $1045mg_{Aza}/kg_{leaves}$), respectively.

혼합냉매의 누출과정에 관한 시뮬레이션 (Simulation of a Leakage Process of Refrigerant Mixtures)

  • 김민수
    • 설비공학논문집
    • /
    • 제5권3호
    • /
    • pp.217-225
    • /
    • 1993
  • Nonflammable mixtures of flammable and nonflammable refrigerants are possible as substitute refrigerants for use in domestic heat pumps and refrigerators. Refrigerant leakage from such a system is of paramount concern since it is possible that the resulting mixture composition remaining in system will reside in the flammable range. This paper presents a simulation of a leakage process of refrigerant mixtures. Idealized cases of isothermal leakage process are considered in this study representing a slow leak. Simulation is performed for selected composition of binary and ternary refrigerant mixture; R-32/134a and R-32/125/134a. Mixture compositions with respect to percentage leak of original charge are presented. In isothermal leakage process, both vapor and liquid compositions of more volatile refrigerant decrease during vapor and liquid leak, but the total composition of this component decreases during vapor leak and increases during liquid leak. Vapor and liquid compositions are determined depending on the vapor-liquid equilibrium relation of the refrigerant mixture. The refrigerant mixture left in the system can go to a nonflammable direction relying on which component in the mixture is flammable.

  • PDF

Zeta-potential을 이용한 이성분 나노유체의 분산안정도 측정 (Measurement of distribution stability of binary nanofluids by zeta-potential)

  • 이강일;정청우;김현준;정진희;강용태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.52-57
    • /
    • 2006
  • This study investigates the distribution stability of binary nanofluids where binary mixtures such as $NH_3/H_2O$ and $H_2O/LiBr$ solution are used as a base fluid. When a little amount of certain nanosized particles is added into a basefluid, the thermal conductivity of that mixture increases greatly. Such mixtures are named 'nanofluids' where nano-particles should be distributed stably and uniformly so the distribution stability of nanoparticles in nanofluids is one of the most important factors for nanofluid application. Therefore, binary nanofluids in which binary mixtures are applied as the basefluids are considered as working fluids. The kind and the concentration of nanoparticles, and the concentration of ammonia are considered as the key parameters. The objectives of this paper are to visualize the dispersed status of particles in binary nanofluids and to find the effect of key parameters on the distribution stability in the ammonia absorption system.

  • PDF

The Measurement of Flash Point for Binary Mixtures of 2,2,4-Trimethylpentane, Methylcyclohexane, Ethylbenzene and p-xylene at 101.3 kPa

  • Hwang, In Chan;In, Se Jin
    • 청정기술
    • /
    • 제26권4호
    • /
    • pp.279-285
    • /
    • 2020
  • Laboratories and industrial processes typically involve the use of flammable substances. An important property used to estimate fire and explosion risk for a flammable liquid is the flash point. In this study, flash point data at 101.3 kPa were determined using a SETA closed cup flash point tester on the following solvent mixtures: {2,2,4-trimethylpentane + methylcyclohexane}, {2,2,4-trimethylpentane + ethylbenzene}, and {2,2,4-trimethylpentane + p-xylene}. The purpose of this work is to obtain flash point data for binary mixtures of 2,2,4-trimethylpentane with three hydrocarbons (methylcyclohexane, ethylbenzene, and p-xylene), which are representative compounds of the main aromatic hydrocarbon fractions of petroleum. The measured flash points are compared with the predicted values calculated using the GE models' activity coefficient patterns: the Wilson, the Non-Random Two-Liquid (NRTL), and the UNIversal QUAsiChemical (UNIQUAC) models. The non-ideality of the mixture is also considered. The average absolute deviation between the predicted and measured lower flash point s is less than 1.99 K, except when Raoult's law is calculated. In addition, the minimum flash point behavior is not observed in any of the three binary systems. This work's predicted results can be applied to design safe petrochemical processes, such as identifying safe storage conditions for non-ideal solutions containing volatile components.