In this paper, we propose a method to classify road weather conditions into rain, fog, and sun using a SVM (Support Vector Machine) classifier after extracting weather features from images acquired in real time using an optical sensor installed on a roadside post. A multi-dimensional weather feature vector consisting of factors such as image sharpeness, image entropy, Michelson contrast, MSCN (Mean Subtraction and Contrast Normalization), dark channel prior, image colorfulness, and local binary pattern as global features of weather-related images was extracted from road images, and then a road weather classifier was created by performing machine learning on 700 sun images, 2,000 rain images, and 1,000 fog images. Finally, the classification performance was tested for 140 sun images, 510 rain images, and 240 fog images. Overall classification performance is assessed to be applicable in real road services and can be enhanced further with optimization along with year-round data collection and training.
The electrocardiogram (ECG) is one of the most extensively employed signals used to diagnose and predict cardiovascular diseases (CVDs). In recent years, several deep learning (DL) models have been proposed to improve detection accuracy. Among these, deep neural networks (DNNs) are the most popular, wherein the features are extracted automatically. Despite the increment in classification accuracy, DL models require exorbitant computational resources and power. This causes the mapping of DNNs to be slow; in addition, the mapping is challenging for a wearable device. Embedded systems have constrained power and memory resources. Therefore full-precision DNNs are not easily deployable on devices. To make the neural network faster and more power-efficient, spiking neural networks (SNNs) have been introduced for fewer operations and less complex hardware resources. However, the conventional SNN has low accuracy and high computational cost. Therefore, this paper proposes a new binarized SNN which modifies the synaptic weights of SNN constraining it to be binary (+1 and -1). In the simulation results, this paper compares the DL models and SNNs and evaluates which model is optimal for ECG classification. Although there is a slight compromise in accuracy, the latter proves to be energy-efficient.
Identifying fine cracks in steel bridge facilities is a challenging task of structural health monitoring (SHM). This study proposed an end-to-end crack image segmentation framework based on a one-step Convolutional Neural Network (CNN) for pixel-level object recognition with high accuracy. To particularly address the challenges arising from small object detection in complex background, efforts were made in loss function selection aiming at sample imbalance and module modification in order to improve the generalization ability on complicated images. Specifically, loss functions were compared among alternatives including the Binary Cross Entropy (BCE), Focal, Tversky and Dice loss, with the last three specialized for biased sample distribution. Structural modifications with dilated convolution, Spatial Pyramid Pooling (SPP) and Feature Pyramid Network (FPN) were also performed to form a new backbone termed CrackDet. Models of various loss functions and feature extraction modules were trained on crack images and tested on full-scale images collected on steel box girders. The CNN model incorporated the classic U-Net as its backbone, and Dice loss as its loss function achieved the highest mean Intersection-over-Union (mIoU) of 0.7571 on full-scale pictures. In contrast, the best performance on cropped crack images was achieved by integrating CrackDet with Dice loss at a mIoU of 0.7670.
International Journal of Computer Science & Network Security
/
제23권4호
/
pp.85-94
/
2023
Image halftoning is a technique for varying grayscale images into two-tone binary images. Unfortunately, the static representation of an image-half toning, wherever each pixel intensity is combined by its local neighbors only, causes missing subjective problem. Also, the existing noise causes an instability criterion. In this paper an image half-toning is represented as a dynamical system for recognizing the global representation. Also, noise is reduced based on a probabilistic model. Since image half-toning is considered as 2-D matrix with a full connected pass, this structure is recognized by the dynamical system of Cellular Neural Networks (CNNs) which is defined by its template. Bayesian Rough Sets is used in exploiting the ideal CNNs construction that synthesis its dynamic. Also, Bayesian rough sets contribute to enhance the quality of the halftone image by removing noise and discovering the effective parameters in the CNNs template. The novelty of this method lies in finding a probabilistic based technique to discover the term of CNNs template and define new learning rules for CNNs internal work. A numerical experiment is conducted on image half-toning corrupted by Gaussian noise.
본 연구에서는 기업의 마케팅 프로모션에 따른 반응고객의 구매액 예측을 위한 방법을 제시하고 SVR의 효과적인 학습방법을 제시하였다. 프로모션에 의한 고객의 구매액을 기반으로 고객을 5등급으로 등급화하고 각 등급 내에서 SVR을 적용하여 고객의 구매액을 예측하였다. 본 연구에서 제안하는 예측된 고객의 등급 내에서 고객 구매액을 예측하는 분리데이터 학습법이 프로모션에 반응한 모든 고객을 대상으로 구매액을 예측하는 전체데이터 학습법보다 높은 예측성과를 보여주었다. 일반적으로 세분화된 고객집단을 하나의 집단으로 보고 동일한 마케팅 전략을 제시하나 본 연구를 통해 구매액에 따라 등급화 된 고객의 등급 내에서 다시 고객의 거래 구매액을 예측하여 동일한 집단 내에서도 차별화된 마케팅 전략을 제시할 수 있는 기반을 제시하였다. 즉 동일한 등급에서도 고객 구매액에 따라 고객의 우선순위를 정할 수 있으며, 이는 마케팅 담당자가 프로모션을 제시할 고객을 선정할 때 유용한 정보로 활용될 수 있다.
최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.
분류 문제에서 특정 범주의 빈도가 다른 범주에 비해 과도하게 높은 경우, 왜곡된 기계 학습을 유발할 수 있는 데이터 불균형(imbalanced data) 문제가 발생한다. 기업부도 예측 문제도 그 중 하나인데, 일반적으로 금융기관과 거래하는 기업들의 부도율은 대단히 낮아서, 부도 사례보다 정상 사례의 빈도가 월등히 높은 데이터 불균형 문제가 발생하고 있다. 이러한 데이터 불균형 문제를 해결하기 위해서는 적절한 표본추출 기법이 적용될 필요가 있으며, 지금껏 소수 범주 데이터를 복원 추출함으로써 다수 범주 데이터와 비율을 맞추어 데이터 불균형을 해결하는 오버 샘플링(oversampling) 기법이 주로 활용되어 왔다. 그러나 전통적인 오버 샘플링은 과적합화(overfitting)가 발생할 위험이 높아질 수 있는 단점이 있다. 이러한 배경에서 본 연구는 효과적인 기업부도 예측 모형 학습을 위한 표본추출 기법으로 2014년에 Menardi와 Torelli가 제안한 ROSE(random over sampling examples) 기법을 제안한다. ROSE 기법은 학습에 사용될 사례를 반복적으로 새롭게 합성하여 생성(synthetic generation)하는 기법으로, 과적합화 문제를 회피하면서도 분류 예측 정확도 개선에 도움을 줄 수 있다. 이에 본 연구에서는 ROSE 기법을 가장 성능이 우수한 이분류기로 알려진 SVM(support vector machine)과 결합하여 국내 한 대형 은행의 기업부도 예측에 적용해 보고, 다른 표본추출 기법들과의 비교연구를 수행하였다. 실험 결과, ROSE 기법이 다른 기법에 비해 통계적으로 유의한 수준으로 SVM의 예측정확도 개선에 기여할 수 있음을 확인하였다. 이러한 본 연구의 결과는 부도예측 외에 다른 사회과학 분야 예측문제의 데이터 불균형 문제 해결에도 ROSE가 우수한 대안이 될 수 있다는 사실을 시사한다.
Symantec의 인터넷 보안위협 보고서(2018)에 따르면 크립토재킹, 랜섬웨어, 모바일 등 인터넷 보안위협이 급증하고 있으며 다각화되고 있다고 한다. 이는 멀웨어(Malware) 탐지기술이 암호화, 난독화 등의 문제에 따른 질적 성능향상 뿐만 아니라 다양한 멀웨어의 탐지 등 범용성을 요구함을 의미한다. 멀웨어 탐지에 있어 범용성을 달성하기 위해서는 탐지알고리즘에 소모되는 컴퓨팅 파워, 탐지 알고리즘의 성능 등의 측면에서의 개선 및 최적화가 이루어져야 한다. 본고에서는 최근 지능화, 다각화 되는 멀웨어를 효과적으로 탐지하기 위하여 CNN(Convolutional Neural Network)을 활용한 멀웨어 탐지 기법인, stream order(SO)-CNN과 incremental coordinate(IC)-CNN을 제안한다. 제안기법은 멀웨어 바이너리 파일들을 이미지화 한다. 이미지화 된 멀웨어 바이너리는 GoogLeNet을 통해 학습되어 딥러닝 모델을 형성하고 악성코드를 탐지 및 분류한다. 제안기법은 기존 방법에 비해 우수한 성능을 보인다.
일정 분야의 문서들에서 그 분야 특정을 반영하는 전문용어를 자동으로 인식하는 연구에 대한 관심이 증가하고 있다. '전문용어 인식'은 문서에서 전문용어가 될 수 있는 언어적 단위를 파악하는 '용어 추출' 과정과 '용어추출' 과정에서 얻어진 용어목록 중 해당분야의 전문용어를 고르는 '전문용어 선택' 과정으로 구성된다. '전문용어 선택' 과정은 용어목록을 전문용어의 특정에 따라 순위화한 후 타당한 전문용어를 파악하는 작업으로 정의된다. 따라서 전문용어 선택 문제는 용어목록의 순위화 작업과 순위화된 목록에서 전문용어와 비전문용어 간의 경계를 인식하는 작업으로 정의된다. 기존의 전문용어 선택 기법은 주로 용어의 빈도수 등과 같은 통계적 특정만을 이용하였다. 하지만 통계적 특정만으로는 효과적으로 전문용어를 선택하기 어렵다. 본 논문의 논제는 전문용어 선택에서 다양한 전문용어의 특정을 고려하고 이들 중 전문용어 선택에서 효과적인 특정을 찾으려는 것이다. 순위화 문제는 다양한 전문용어 특정을 도출하고 이들을 기계학습방법으로 통합하여 해결한다. 경계인식 문제는 전문용어와 비전문용어의 이진 분류 문제로 정의하고 기계학습방법으로 해결한다. 본 논문의 기법은 경계인식측면에서 78-86%의 정확률과 87% -90%의 재현율을 나타내었으며, 순위화 측면에서 89%-92%의 11포인트 평균정확률을 나타내었다. 또한 기존 연구보다 최고 26% 의 성능향상을 보였다.
본 연구는 청소년을 대상으로 학습 목적 이외의 인터넷 사용시간을 파악하고, 인터넷 사용시간에 따른 주관적 상태를 파악하여 이들의 상호 관련성을 파악하고자 하였다. 2016년 청소년건강행태온라인조사를 이용하여 인터넷 사용시간에 따른 주관적 상태의 교차비와 95% 신뢰구간을 이분형로지스틱회귀분석을 통해 산출하였다. 주관적 건강인지와 주관적 구강건강인지에서는 학습 목적 이외의 인터넷사용을 하지 않는 경우에 비해 인터넷 사용시간이 길수록 주관적으로 불건강하다고 느끼는 경우에서의 각각의 교차비가 유의하게 증가하였다. 주관적 체형인지에서도 인터넷사용시간이 길수록 살이 찐 편이라고 느낄 교차비가 유의하게 증가하였다. 주관적 행복은 인터넷을 300분 이상 사용하는 경우 주관적으로 불행하다고 생각할 교차비가 1.19배(CI=1.10-1.30) 높게 나타났다. 학습 목적 이외의 장시간의 인터넷 사용이 청소년 건강과 행복에 부정적인 영향을 미칠 수 있으므로 인터넷 사용에 대한 권장시간이 필요할 것으로 생각한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.