• Title/Summary/Keyword: Binary instrumentation

Search Result 27, Processing Time 0.031 seconds

Exact Average BER Analysis for Decoded-and-Forward Relay Systems (복호 후 전달 릴레이 시스템에 대한 정확한 평균 오류율 분석)

  • Jang, Jean-Yeong;Ko, Kyun-Byoung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.16-19
    • /
    • 2010
  • 본 논문에서는 송신국과 릴레이에서의 오류확률을 고려한 복호 후 전달 릴레이(DF: Decoded and Forward) 시스템에 대하여 정확한 비트 오류율 분석을 수행하고자 한다. 성능 분석에서는 복호 후 전달 릴레이 시스템의 노드들 간의 채널을 상호 독립적인 레일리 페이딩 채널로 가정하고 변조 방식으로는 BPSK(Binary Phase Shift Keying)를 사용한다. 우선, 정확한 평균 오류율 분석을 위하여 송신국-수신국 링크와 릴레이-수신국 링크 결합시 릴레이노드의 복호결과 오류 유무에 따라 수신 SNR(Signal to Noise Ratio)을 각각 유도하고 복호결과가 오류일 때 수신 SNR이 양수인 경우와 음수인 경우를 고려하여 그에 대한 PDF(Probability Density Function)를 계산한다. 그리고 각각의 경우에 대한 평균 오류율을 유도하였다. 또한 모의실험 결과와의 비교를 통하여 제안된 성능 분석 기법의 정확성을 검증하였다.

  • PDF

Goodness of Link Tests for Binary Response Data

  • Yeo, In-Kwon
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.357-366
    • /
    • 2001
  • The present paper develops a method to check the propriety of link functions for binary data. In order to parameterize a certain type of goodness of the link, a family of link functions indexed by a shape parameter is proposed. I first investigate the maximum likelihood estimation of the shape parameter as well as regression parameters and then derive their large sample behaviors of the estimators. A score test is considered to evaluate the goodness of the current link function. For illustration, I employ two families of power transformations, the modulus transformation by John and Draper (1980) and the extended power transformation by Yeo and Johnson (2000), which are appropriate to detect symmetric and asymmetric inadequacy of the selected link function. respectively.

  • PDF

Analysis of the 74LS381 ALU and Design of an Equivalent Circuit to the 74L (74LS381 ALU의 분석 및 등가회로의 설계)

  • Lee, Jae-Seok;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.153-156
    • /
    • 2001
  • This paper analyzes the 74LS381 ALU and designs its equivalent circuit. The 74LS381 ALU is arithmetic logic units(ALUs)/function generators that perform eight binary arithmetic/logic operations on two 4-bit words. However there are only little information to understand and design this circuit. Thus, we not only analyzed it but also designed an equivalent circuit to the 74LS381.

  • PDF

The Dual-Channel, Pulse-Counting Pierce-Blitzstein Photometer-The PBPHOT: Our Last Paper with Bob Koch, and Additional Technical History

  • Ambruster, Carol;Hull, Tony;Koch, Robert H.;Mitchell, Rich;Wolf, George;Smith, Bob
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.195-198
    • /
    • 2012
  • The dual channel Pierce-Blitzstein photometer (PBPHOT) was productively used at the Flower and Cook Observatory to provide 60 years of study of binary systems and other cosmic objects. We review the history of this instrument, discuss its calibration, and recall some personal and professional interactions with Professor Robert H. Koch.

Dynamic Monitoring Framework and Debugging System for Embedded Virtualization System (가상화 환경에서 임베디드 시스템을 위한 모니터링 프레임워크와 디버깅 시스템)

  • Han, Inkyu;Lim, Sungsoo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.792-797
    • /
    • 2015
  • Effective profiling diagnoses the failure of the system and informs risk. If a failure in the target system occurs, it is impossible to diagnose more than one of the exiting tools. In this respect, monitoring of the system based on virtualization is useful. We present in this paper a monitoring framework that uses the characteristics of hardware virtualization to prevent side-effects from a target guest, and uses dynamic binary instrumentation with instruction-level trapping based on hardware virtualization to achieve efficiency and flexibility. We also present examples of some applications that use this framework. The framework provides tracing of guest kernel function, memory dump, and debugging that uses GDB stub with GDB remote protocol. The experimental evaluation of our prototype shows that the monitoring framework incurs at most 2% write memory performance overhead for end users.

Analysis of 74181 Arithmetic Logic Units (74184 Arithmetic Logic Units의 분석)

  • Lee, Jae-Seok;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.778-780
    • /
    • 2000
  • The 74181 is arithmetic logic units(ALU)/function generator. This circuit performs 16 binary arithmetic operations on two 4-bit words. And a full carry look-ahead scheme is made available in this device. The 74181 can also be utilized as a comparator. This circuit has been also designed to provide 16 possible functions of two Boolean variables without the use of external circuitry. This paper analyzes the function of the logic and the implementation adopted in the design of 74181. The understanding of the logic characteristics of this chip enables us to improve future applications.

  • PDF

Implementation of the Automated De-Obfuscation Tool to Restore Working Executable (실행 파일 형태로 복원하기 위한 Themida 자동 역난독화 도구 구현)

  • Kang, You-jin;Park, Moon Chan;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.785-802
    • /
    • 2017
  • As cyber threats using malicious code continue to increase, many security and vaccine companies are putting a lot of effort into analysis and detection of malicious codes. However, obfuscation techniques that make software analysis more difficult are applied to malicious codes, making it difficult to respond quickly to malicious codes. In particular, commercial obfuscation tools can quickly and easily generate new variants of malicious codes so that malicious code analysts can not respond to them. In order for analysts to quickly analyze the actual malicious behavior of the new variants, reverse obfuscation(=de-obfuscation) is needed to disable obfuscation. In this paper, general analysis methodology is proposed to de-obfuscate the software used by a commercial obfuscation tool, Themida. First, We describe operation principle of Themida by analyzing obfuscated executable file using Themida. Next, We extract original code and data information of executable from obfuscated executable using Pintool, DBI(Dynamic Binary Instrumentation) framework, and explain the implementation results of automated analysis tool which can deobfuscate to original executable using the extracted original code and data information. Finally, We evaluate the performance of our automated analysis tool by comparing the original executable with the de-obfuscated executable.

A Study on Optimal Neural Network Structure of Nonlinear System using Genetic Algorithm (유전 알고리즘을 이용한 비선형 시스템의 최적 신경 회로망 구조에 관한 연구)

  • Kim, Hong-Bok;Kim, Jeong-Keun;Kim, Min-Jung;Hwang, Seung-Wook
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.221-225
    • /
    • 2004
  • This paper deals with a nonlinear system modelling using neural network and genetic algorithm Application q{ neural network to control and identification is actively studied because of their approximating ability of nonlinear function. It is important to design the neural network with optimal structure for minimum error and fast response time. Genetic algorithm is getting more popular nowadays because of their simplicity and robustness. in this paper, we optimize a neural network structure using genetic algorithm The genetic algorithm uses binary coding for neural network structure and searches for an optimal neural network structure of minimum error and fast response time. Through an extensive simulation, the optimal neural network structure is shown to be effective for identification of nonlinear system.

Analysis of Positive Logic and Negate Logic in 1bit adder and 4 bit adder 74LS283 (1bit 전 가산기와 4bit 덧셈 연산기 74LS283에서 의정 논리와 부 논리에 대한 분석)

  • Chung, Tong-Ho;Chung, Tea-Sang;You, Jun-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.781-783
    • /
    • 2000
  • 1bit full adder have 3 input (including carry_in) and 2 outputs(Sum and Carry_out). Because of 1 bit full adder's propagation delay. We usually use 4-bit binary full adder with fast carry, 74LS283. The 74LS283 is positive logic circuit chip. But the logic function of binary adder is symmetrical, so it can be possible to use it not only positive logic but also the negative logic. This thesis use symmetrical property. such as $C_{i+1}(\bar{a_i}\bar{b_i}\bar{c_i})=C_{i+1}{\bar}(a_i,\;b_i,\;c_i)$ and $S_i(\bar{a_i}\bar{b_i}\bar{c_i})=\bar{S_i}(a_i,\;b_i,\;c_i)$. And prove this property with logic operation. Using these property, the 74LS283 adder is possile as the negation logic circuit. It's very useful to use the chip in negative logic. because many system chip is negative logic circuit. for example when we have negative logic chip with 74LS283. we don't need any not gate for 74LS283 input, and just use output of adder(74LS283) as the negation of original output.

  • PDF

Classification of White Blood Cell Using Adaptive Active Contour

  • Theerapattanakul, J.;Plodpai, J.;Mooyen, S.;Pintavirooj, C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1889-1891
    • /
    • 2004
  • The differential white blood cell count plays an important role in the diagnosis of different diseases. It is a tedious task to count these classes of cell manually. An automatic counter using computer vision helps to perform this medical test rapidly and accurately. Most commercial-available automatic white blood cell analysis composed mainly 3 steps including segmentation, feature extraction and classification. In this paper we concentrate on the first step in automatic white-blood-cell analysis by proposing a segmentation scheme that utilizes a benefit of active contour. Specifically, the binary image is obtained by thresolding of the input blood smear image. The initial shape of active is then placed roughly inside the white blood cell and allowed to grow to fit the shape of individual white blood cell. The white blood cell is then separated using the extracted contour. The force that drives the active contour is the combination of gradient vector flow force and balloon force. Our purposed technique can handle very promising to separate the remaining red blood cells.

  • PDF