• Title/Summary/Keyword: Binary images

Search Result 572, Processing Time 0.032 seconds

Automatic Detection Method for Mura Defects on Display Films Using Morphological Image Processing and Labeling

  • Cho, Sung-Je;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.234-239
    • /
    • 2014
  • This paper proposes a new automatic detection method to inspect mura defects on display film surface using morphological image processing and labeling. This automatic detection method for mura defects on display films comprises 3 phases of preprocessing with morphological image processing, Gabor filtering, and labeling. Since distorted results could be obtained with the presence of non-uniform illumination, preprocessing step reduces illumination components using morphological image processing. In Gabor filtering, mura images are created with binary coded mura components using Gabor filters. Subsequently, labeling is a final phase of finding the mura defect area using the difference between large mura defects and values in the periphery. To evaluate the accuracy of the proposed detection method, detection rate was assessed by applying the method in 200 display film samples. As a result, the detection rate was high at about 95.5%. Moreover, the study was able to acquire reliable results using the Semu index for luminance mura in image quality inspection.

Reconstruction of Partially Damaged Binary Images by Using Fuzzy Binaarization and Hopfield Network (퍼지 이진화 방법과 홉필드 네트워크를 이용한 손상된 이진 영상 복원)

  • Kim, Ji-Yeon;Jung, In-Sung;Kim, Kwang Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.470-473
    • /
    • 2016
  • 본 논문에서는 영상에서 일부 정보가 손실 또는 손상된 경우에 대해서 홉필드 네트워크를 적용하여 영상을 복원하는 방법을 제안한다. 제안된 방법은 영상을 그레이 영상으로 변환한 후, 퍼지 이진화 기법을 적용하여 영상을 이진화한다. 이진화된 영상에 홉필드 네트워크를 적용하여 영상의 특징들을 학습한다. 따라서 영상의 일부 정보가 손실되거나 잡음이 있는 영상에서 퍼지 이진화 기법을 적용하여 이진화한 후, 이진화된 결과를 홉필드 네트워크에 적용하여 영상을 복원한다. 제안된 방법을 5장의 그레이 영상을 대상으로 실험한 결과, 퍼지 이진화 기법과 홉필드 네트워크를 적용한 방법이 잡음이 있거나 영상의 정보가 손실된 영상에서 복원 정도가 높은 것을 실험을 통하여 확인하였다.

  • PDF

PCB Defects Detection using Connected Component Classification (연결 성분 분류를 이용한 PCB 결함 검출)

  • Jung, Min-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.113-118
    • /
    • 2011
  • This paper proposes computer visual inspection algorithms for PCB defects which are found in a manufacturing process. The proposed method can detect open circuit and short circuit on bare PCB without using any reference images. It performs adaptive threshold processing for the ROI (Region of Interest) of a target image, median filtering to remove noises, and then analyzes connected components of the binary image. In this paper, the connected components of circuit pattern are defined as 6 types. The proposed method classifies the connected components of the target image into 6 types, and determines an unclassified component as a defect of the circuit. The analysis of the original target image detects open circuits, while the analysis of the complement image finds short circuits. The machine vision inspection system is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiment results show that the proposed algorithms are quite successful.

Halftoning Method by CMY Printing Using BNM

  • Kim, Yun-Tae;Kim, Jeong-Yeop;Kim, Hee-Soo;Yeong Ho ha
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.851-854
    • /
    • 2000
  • Digital halftoning is a technique to make an equivalent binary image from scanned photo or graphic images. Low pass filtering characteristic of human visual system can be applied to get the effect of spatial averaging of local area consisted of black and white pixels for gray image. The overlapping of black dot decreases brightness and black dot is very sensitive to human visual system in the bright region. In this paper, for gray-level expression, only bright gray region in the color image is considered for blue noise mask (BNM) approach. To solve this problem, BNM with CMY dot is used for the bright region instead of black dot. Dot-on-dot model with single mask causes the problem making much black dot overlap, color distortion. Therefore approach with three masks for C, M and Y each is proposed to decrease pixel overlap and color distortion.

  • PDF

Opto-Digital fingerprint identification system for security verification (안전 검증을 위한 광-디지탈 지문인식 시스템)

  • Seung Hyun Lee;Sang-Yi Yi;Hyung Ji Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.143-149
    • /
    • 1996
  • We propose an Opto-Digital hybrid fingerprint Identification system based on the binary phase extraction joint transform correlator(BPEJTC) for validation and security yerification. It is shown that since the BPEJTC provides higher peak-to-sidelobe ratio than that of the conventional JTC and does not cause correlation peaks due to intra-class association, this system is well-adaptive to the multiple object environments. Experimental results show that this system has a good performance in the presence of multiple images and the variations of the same person.

  • PDF

Tire Tread Pattern Classification Using Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘을 이용한 타이어 접지면 패턴의 분류)

  • Kang, Yoon-Kwan;Jung, Soon-Won;Bae, Sang-Wook;Park, Tae-Hong;Kim, Min-Gi;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.439-441
    • /
    • 1993
  • A tire tread pattern recognition scheme of which the pattern recognition algorithm is designed based on the fuzzy hierarchical clustering method is proposed and compared with the scheme based on the conventional FCM. The features are extracted from the binary images of the tire tread patterns. In the proposed scheme, the protoypes are obtained more easily and schematically than obtained prototypes using FCM. The experimental results of classification for the practical situations are given and shows the usefulness of the proposed scheme.

  • PDF

Sweet Persimmons Classification based on a Mixed Two-Step Synthetic Neural Network (혼합 2단계 합성 신경망을 이용한 단감 분류)

  • Roh, SeungHee;Park, DongGyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1358-1368
    • /
    • 2021
  • A research on agricultural automation is a main issues to overcome the shortage of labor in Korea. A sweet persimmon farmers need much time and labors for classifying profitable sweet persimmon and ill profitable products. In this paper, we propose a mixed two-step synthetic neural network model for efficiently classifying sweet persimmon images. In this model, we suggested a surface direction classification model and a quality screening model which constructed from image data sets. Also we studied Class Activation Mapping(CAM) for visualization to easily inspect the quality of the classified products. The proposed mixed two-step model showed high performance compared to the simple binary classification model and the multi-class classification model, and it was possible to easily identify the weak parts of the classification in a dataset.

Assessment of ASPECTS from CT Scans using Deep Learning

  • Khanh, Trinh Le Ba;Baek, Byung Hyun;Kim, Seul Kee;Do, Luu-Ngoc;Yoon, Woong;Park, Ilwoo;Yang, Hyung-Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.573-579
    • /
    • 2019
  • Alberta Stroke Program Early Computed Tomographic Scoring (ASPECTS) is a 10-point CT-scan score designed to quantify early ischemic changes in patients with acute ischemic stroke. However, an assessment of ASPECTS remains a challenge for neuroradiologists in stroke centers. The purpose of this study is to develop an automated ASPECTS scoring system that provides decision-making support by utilizing binary classification with three-dimensional convolutional neural network to analyze CT images. The proposed method consists of three main steps: slice filtering, contrast enhancement and image classification. The experiments show that the obtained results are very promising.

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

COUNTING OF FLOWERS BASED ON K-MEANS CLUSTERING AND WATERSHED SEGMENTATION

  • PAN ZHAO;BYEONG-CHUN SHIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.2
    • /
    • pp.146-159
    • /
    • 2023
  • This paper proposes a hybrid algorithm combining K-means clustering and watershed algorithms for flower segmentation and counting. We use the K-means clustering algorithm to obtain the main colors in a complex background according to the cluster centers and then take a color space transformation to extract pixel values for the hue, saturation, and value of flower color. Next, we apply the threshold segmentation technique to segment flowers precisely and obtain the binary image of flowers. Based on this, we take the Euclidean distance transformation to obtain the distance map and apply it to find the local maxima of the connected components. Afterward, the proposed algorithm adaptively determines a minimum distance between each peak and apply it to label connected components using the watershed segmentation with eight-connectivity. On a dataset of 30 images, the test results reveal that the proposed method is more efficient and precise for the counting of overlapped flowers ignoring the degree of overlap, number of overlap, and relatively irregular shape.