• Title/Summary/Keyword: Binary images

Search Result 572, Processing Time 0.036 seconds

Study on the Development of Auto-classification Algorithm for Ginseng Seedling using SVM (Support Vector Machine) (SVM(Support Vector Machine)을 이용한 묘삼 자동등급 판정 알고리즘 개발에 관한 연구)

  • Oh, Hyun-Keun;Lee, Hoon-Soo;Chung, Sun-Ok;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.40-47
    • /
    • 2011
  • Image analysis algorithm for the quality evaluation of ginseng seedling was investigated. The images of ginseng seedling were acquired with a color CCD camera and processed with the image analysis methods, such as binary conversion, labeling, and thinning. The processed images were used to calculate the length and weight of ginseng seedlings. The length and weight of the samples could be predicted with standard errors of 0.343 mm, and 0.0214 g respectively, $R^2$ values of 0.8738 and 0.9835 respectively. For the evaluation of the three quality grades of Gab, Eul, and abnormal ginseng seedlings, features from the processed images were extracted. The features combined with the ratio of the lengths and areas of the ginseng seedlings efficiently differentiate the abnormal shapes from the normal ones of the samples. The grade levels were evaluated with an efficient pattern recognition method of support vector machine analysis. The quality grade of ginseng seedling could be evaluated with an accuracy of 95% and 97% for training and validation, respectively. The result indicates that color image analysis with support vector machine algorithm has good potential to be used for the development of an automatic sorting system for ginseng seedling.

Sea Ice Extents and global warming in Okhotsk Sea and surrounding Ocean - sea ice concentration using airborne microwave radiometer -

  • Nishio, Fumihiko
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.76-82
    • /
    • 1998
  • Increase of greenhouse gas due to $CO_2$ and CH$_4$ gases would cause the global warming in the atmosphere. According to the global circulation model, it is pointed out in the Okhotsk Sea that the large increase of atmospheric temperature might be occurredin this region by global warming due to the doubling of greenhouse effectgases. Therefore, it is very important to monitor the sea ice extents in the Okhotsk Sea. To improve the sea ice extents and concentration with more highly accuracy, the field experiments have begun to comparewith Airborne Microwave Radiometer (AMR) and video images installed on the aircraft (Beach-200). The sea ice concentration is generally proportional to the brightness temperature and accurate retrieval of sea ice concentration from the brightness temperature is important because of the sensitivity of multi-channel data with the amount of open water in the sea ice pack. During the field experiments of airborned AMR the multi-frequency data suggest that the sea ice concentration is slightly dependending on the sea ice types since the brightness temperature is different between the thin and small piece of sea ice floes, and a large ice flow with different surface signatures. On the basis of classification of two sea ice types, it is cleary distinguished between the thin ice and the large ice floe in the scatter plot of 36.5 and 89.0GHz, but it does not become to make clear of the scatter plot of 18.7 and 36.5GHz Two algorithms that have been used for deriving sea ice concentrations from airbomed multi-channel data are compared. One is the NASA Team Algorithm and the other is the Bootstrap Algorithm. Intrercomparison on both algorithms with the airborned data and sea ice concentration derived from video images bas shown that the Bootstrap Algorithm is more consistent with the binary maps of video images.

  • PDF

A Semi-fragile Image Watermarking Scheme Exploiting BTC Quantization Data

  • Zhao, Dongning;Xie, Weixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1499-1513
    • /
    • 2014
  • This paper proposes a novel blind image watermarking scheme exploiting Block Truncation Coding (BTC). Most of existing BTC-based watermarking or data hiding methods embed information in BTC compressed images by modifying the BTC encoding stage or BTC-compressed data, resulting in watermarked images with bad quality. Other than existing BTC-based watermarking schemes, our scheme does not really perform the BTC compression on images during the embedding process but uses the parity of BTC quantization data to guide the watermark embedding and extraction processes. In our scheme, we use a binary image as the original watermark. During the embedding process, the original cover image is first partitioned into non-overlapping $4{\times}4$ blocks. Then, BTC is performed on each block to obtain its BTC quantized high mean and low mean. According to the parity of high mean and the parity of low mean, two watermark bits are embedded in each block by modifying the pixel values in the block to make sure that the parity of high mean and the parity of low mean in the modified block are equal to the two watermark bits. During the extraction process, BTC is first performed on each block to obtain its high mean and low mean. By checking the parity of high mean and the parity of low mean, we can extract the two watermark bits in each block. The experimental results show that the proposed watermarking method is fragile to most image processing operations and various kinds of attacks while preserving the invisibility very well, thus the proposed scheme can be used for image authentication.

Adaptive thresholding for two-dimensional barcode images using two thresholds and the integral image (이중 문턱 값과 적분영상을 이용한 2차원 바코드 영상의 적응적 이진화)

  • Lee, Yeon-Kyung;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2453-2458
    • /
    • 2012
  • In this paper, we propose an adaptive thresholding method to binarize two-dimensional barcode images. Adaptive thresholding methods that minimize light effects convert an original image into a binary image. The methods are applied to document image binarization. The methods, however, have problems of determining box size used in adaptive thresholding. thus, they inappropriate to use in recognition of two-dimensional barcode images. To overcome the problem, we analysis the problem and propose a new adaptive threshold method using the integral image. To show the effectiveness of our method, we compared our method with the well-known existing methods in terms of visual quality and processing time. The experimental result indicates that the proposed method is superior to the existing method.

Robustness Evaluation of Image Watermarking mixed Key and Logo Scheme (키와 로고 방식을 혼합한 이미지 워터마킹의 강인성 평가)

  • Park, Young;Kim, Yoon-Ho;Choi, Se-Ha;Lee, Myong-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.598-601
    • /
    • 2002
  • In this research, robustness of image watermarking mixed Key and Logo scheme was evaluated. A personal ID of a copyrighter was key and watermark was logo image. The standard images of Baboon, Cameraman and Lena were used for experimental images, binary image‘Park’of 32$\times$32 and 64$\times$64 size were used for the watermark image, respectively. for robustness evaluation of the watermark, reconstructive rates of the watermark were obtained from images inserted watermark with image transformation or JPEG lossy compression. The experimental results show that the reconstructive rates of the case of 32$\times$32 watermark was better than the case of the 64$\times$64 watermark; average 5.9%, 13.9%, 6.5%, and 4.2% in the case of scale-down rates, rotational rates, impulse noise power density, and JPEG lossy compression rates, respectively.

  • PDF

Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images

  • Bu, Hee-Hyung;Kim, Nam-Chul;Lee, Bae-Ho;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

Rotation Angle Estimation Method using Radial Projection Profile (방사 투영 프로파일을 이용한 회전각 추정 방법)

  • Choi, Minseok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.20-26
    • /
    • 2021
  • In this paper, we studied the rotation angle estimation methods required for image alignment in an image recognition environment. In particular, a rotation angle estimation method applicable to a low specification embedded-based environment was proposed and compared with the existing method using complex moment. The proposed method estimates the rotation angle through similarity mathcing of the 1D projection profile along the radial axis after converting an image into polar coordinates. In addition, it is also possible to select a method of using vector sum of the projection profile, which more simplifies the calculation. Through experiments conducted on binary pattern images and gray-scale images, it was shown that the estimation error of the proposed method is not significantly different from that of complex moment-based method and requires less computation and system resources. For future expansion, a study on how to match the rotation center in gray-scale images will be needed.

Automated Water Surface Extraction in Satellite Images Using a Comprehensive Water Database Collection and Water Index Analysis

  • Anisa Nur Utami;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Monitoring water surface has become one of the most prominent areas of research in addressing environmental challenges.Accurate and automated detection of watersurface in remote sensing imagesis crucial for disaster prevention, urban planning, and water resource management, particularly for a country where water plays a vital role in human life. However, achieving precise detection poses challenges. Previous studies have explored different approaches,such as analyzing water indexes, like normalized difference water index (NDWI) derived from satellite imagery's visible or infrared bands and using k-means clustering analysis to identify land cover patterns and segment regions based on similar attributes. Nonetheless, challenges persist, notably distinguishing between waterspectralsignatures and cloud shadow or terrain shadow. In thisstudy, our objective is to enhance the precision of water surface detection by constructing a comprehensive water database (DB) using existing digital and land cover maps. This database serves as an initial assumption for automated water index analysis. We utilized 1:5,000 and 1:25,000 digital maps of Korea to extract water surface, specifically rivers, lakes, and reservoirs. Additionally, the 1:50,000 and 1:5,000 land cover maps of Korea aided in the extraction process. Our research demonstrates the effectiveness of utilizing a water DB product as our first approach for efficient water surface extraction from satellite images, complemented by our second and third approachesinvolving NDWI analysis and k-means analysis. The image segmentation and binary mask methods were employed for image analysis during the water extraction process. To evaluate the accuracy of our approach, we conducted two assessments using reference and ground truth data that we made during this research. Visual interpretation involved comparing our results with the global surface water (GSW) mask 60 m resolution, revealing significant improvements in quality and resolution. Additionally, accuracy assessment measures, including an overall accuracy of 90% and kappa values exceeding 0.8, further support the efficacy of our methodology. In conclusion, thisstudy'sresults demonstrate enhanced extraction quality and resolution. Through comprehensive assessment, our approach proves effective in achieving high accuracy in delineating watersurfaces from satellite images.

Deep Learning-Based Defects Detection Method of Expiration Date Printed In Product Package (딥러닝 기반의 제품 포장에 인쇄된 유통기한 결함 검출 방법)

  • Lee, Jong-woon;Jeong, Seung Su;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.463-465
    • /
    • 2021
  • Currently, the inspection method printed on food packages and boxes is to sample only a few products and inspect them with human eyes. Such a sampling inspection has the limitation that only a small number of products can be inspected. Therefore, accurate inspection using a camera is required. This paper proposes a deep learning object recognition technology model, which is an artificial intelligence technology, as a method for detecting the defects of expiration date printed on the product packaging. Using the Faster R-CNN (region convolution neural network) model, the color images, converted gray images, and converted binary images of the printed expiration date are trained and then tested, and each detection rates are compared. The detection performance of expiration date printed on the package by the proposed method showed the same detection performance as that of conventional vision-based inspection system.

  • PDF

An Efficient BC Approach to Compute Fractal Dimension of Coastlines (개선된 BC법과 해안선의 프랙탈 차원 계산)

  • So, Hye-Rim;So, Gun-Baek;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.207-212
    • /
    • 2016
  • The box-counting(BC) method is one of the most commonly used methods for fractal dimension calculation of binary images in the fields of Engineering, Science, Medical Science, Geology, etc due to its simplicity and reliability. It deals with only square images with each size equal to the power of 2 to prevent it from discarding unused pixels for images of arbitrary size. In this paper, we presents a more efficient BC method based on the original one, which is applicable to images of arbitrary size. The proposed approach allows the number of the counting boxes to be real to improve the estimation accuracy. The mean absolute error performance is computed on two deterministic fractal images whose theoretical dimensions are well known to compare with those of the existing BC method and triangular BC method. The experimental results show that the proposed method can outperform the two methods and assess the complexity of coastline images of Korea and Chodo island taken from the Google map.