• Title/Summary/Keyword: Binary image

Search Result 987, Processing Time 0.033 seconds

Detection of Wildfire-Damaged Areas Using Kompsat-3 Image: A Case of the 2019 Unbong Mountain Fire in Busan, South Korea

  • Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Forest fire is a critical disaster that causes massive destruction of forest ecosystem and economic loss. Hence, accurate estimation of the burned area is important for evaluation of the degree of damage and for preparing baseline data for recovery. Since most of the area size damaged by wildfires in Korea is less than 1 ha, it is necessary to use satellite or drone images with a resolution of less than 10m for detecting the damage area. This paper aims to detect wildfire-damaged area from a Kompsat-3 image using the indices such as NDVI (normalized difference vegetation index) and FBI (fire burn index) and to examine the classification characteristics according to the methods such as Otsu thresholding and ISODATA(iterative self-organizing data analysis technique). To mitigate the salt-and-pepper phenomenon of the pixel-based classification, a gaussian filter was applied to the images of NDVI and FBI. Otsu thresholding and ISODATA could distinguish the burned forest from normal forest appropriately, and the salt-and-pepper phenomenon at the boundaries of burned forest was reduced by the gaussian filter. The result from ISODATA with gaussian filter using NDVI was closest to the official record of damage area (56.9 ha) published by the Korea Forest Service. Unlike Otsu thresholding for binary classification,since the ISODATA categorizes the images into multiple classes such as(1)severely burned area, (2) moderately burned area, (3) mixture of burned and unburned areas, and (4) unburned area, the characteristics of the boundaries consisting of burned and normal forests can be better expressed. It is expected that our approach can be utilized for the high-resolution images obtained from other satellites and drones.

Recognition of Vehicle Number Plate Using Color Decomposition Method and Back Propagation Neural Network (색 분해법과 역전파 신경 회로망을 이용한 차량 번호판 인식)

  • 이재수;김수인;서춘원
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.46-52
    • /
    • 1998
  • In this paper, after inputting the computer with the attached number plate on the vehicle, using it, the color decomposition method and back propagation neural network proposed the extractable method of the vehicle number plate at high speed. This method separated R, G, B signal form input moving vehicle image to computer through video camera, then after transform this R, G, B signal into input image data of the computer by using color depth of vehicle number plate and store up binary value in the memory frame buffer. After adapting character's recognition algorithm, also improving this, by adapting back propagation neural network makes the vehicle number plate recognition system. Also minimalizing the similar color's confusion, adapting horizontal and vertical extracting algorithm by using the vehicle's rectangular architecture shows the extract and character's recognition of the vehicle number plate at high speed.

  • PDF

A Video Watermarking Based on Wavelet Transform Using Spread Spectrum Technique (대역확산방법을 이용한 웨이블릿 기반의 비디오 워터마킹)

  • Kim, Seung-Jin;Kim, Tae-Su;Lee, Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.11-18
    • /
    • 2005
  • In this paper, we proposed a video watermarking algerian based on wavelet transform using statistical characteristic of video according to the energy distribution and the spread spectrum technique. In the proposed method, the original video is splitted by spatial difference metric and classified into the motion region and the motionless region according to the motion degree. The motion region is decomposed into 3-levels using 3D DWT and the motionless region is decomposed into 2-levels using 2D DWT The baseband of the wavelet-decomposed image is not utilized because of the image quality. So that the standard deviation of the highest subband coefficients except for the baseband is used to determine the threshold. Binary video watermarks preprocessed by the random permutation and the spread spectrum technique are embedded into selected coefficients. In computer experiments, the proposed algorithm was found to be more invisible and robust than the conventional algorithms.

A Vehicle License Plate Recognition Using the Feature Vectors based on Mesh and Thinning (메쉬 및 세선화 기반 특징 벡터를 이용한 차량 번호판 인식)

  • Park, Seung-Hyun;Cho, Seong-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.705-711
    • /
    • 2011
  • This paper proposes an effective algorithm of license plate recognition for industrial applications. By applying Canny edge detection on a vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are compared with the pre-learned weighting values by backpropagation neural network to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm (Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식)

  • Park, SeungHyun;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • This paper proposes an effective algorithm of Korean license plate recognition. By applying Haar-like feature and Canny edge detection on a captured vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are classified using neural networks trained by backpropagation algorithm to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

Digital Watermarking using ART2 Algorithm (ART2 알고리즘을 이용한 디지털 워터마킹)

  • 김철기;김광백
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.81-97
    • /
    • 2003
  • In this paper, we suggest a method of robust watermarking for protection of multimedia data using the wavelet transform and artificial neural network. for the purpose of implementation, we decompose a original image using wavelet transform at level 3. After we classify transformed coefficients of other subbands using neural network except fur the lowest subband LL$_3$, we apply a calculated threshold about chosen cluster as the biggest. We used binary logo watermarks to make sure that it is true or not on behalf of the Gaussian Random Vector. Besides, we tested a method of dual watermark insertion and extraction. For the purpose of implementation, we decompose a original image using wavelet transform at level 3. After we classify transformed coefficients of other subbands using neural network except for the lowest subband LL$_3$, we apply a above mentioned watermark insert method. In the experimental results, we found that it has a good quality and robust about many attacks.

  • PDF

Traffic Sign Area Detection by using Color Rate and Distance Rate (컬러비와 거리비를 이용한 교통표지판 영역추출)

  • Kwak, Hyun-Wook;Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.681-688
    • /
    • 2002
  • This paper proposes a system detecting the area of traffic sign, which uses color rate as the information of colors, and corner point and distance rate as the information of morphology. In this system, a candidate area is extracted by performing dilation operation on the binary image made by the color rate of R, G, B components and by detecting corner point and center point through mask. The area of traffic sign with varied shapes is extracted by calculating the distance rate from center point, which is the information of morphology. The results of this experiment demonstrate that in this system which is invariable regardless of its size and location, it is possible to extract the exact area from varied traffic signs such as the shapes of triangle, circle, inverse triangle, and square as well as from the images at both day and night when brightness value is greatly different. Moreover, it demonstrates great accuracy and speed in processing.

Test Generation for Partial Scanned Sequential Circuits Based on Boolean Function Manipulation (논리함수처리에 의한 부분스캔순차회로의 테스트생성)

  • Choi, Ho-Yong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.572-580
    • /
    • 1996
  • This paper describes a test generation method for sequential circuits which improves the application limits of the IPMT method by applying the partial scan design to the IPMT method. To solve the problem that the IPMT method requires enormous computation time in image computation, and generates test patterns after the partialscan design is introduced to reduce test complexity. Scan flip-flops are selected for the partial scan design according to the node size of the state functions of a sequential circuit in their binary decision diagram representations. Experimental results on ISCAS'95 benchmark circuits show that a test generator based on our method has achieved 100% fault coverage by use of either 20% scan FFs for s344, s349, and s420 or 80% scan FFs for sl423. However, test gener-ators based on the previous IPM method have not achieved 100% fault coverage for those circuits.

  • PDF

Improved Euclidean transform method using Voronoi diagram (보로노이 다이어그램에 기반한 개선된 유클리디언 거리 변환 방법)

  • Jang Seok Hwan;Park Yong Sup;Kim Whoi Yul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1686-1691
    • /
    • 2004
  • In this paper, we present an improved method to calculate Euclidean distance transform based on Guan's method. Compared to the conventional method, Euclidean distance can be computed faster using Guan's method when the number of feature pixels is small; however, overall computational cost increases proportional to the number of feature pixels in an image. To overcome this problem, we divide feature pixels into two groups: boundary feature pixels (BFPs) and non-boundary feature pixels (NFPs). Here BFPs are defined as those in the 4-neighborhood of foreground pixels. Then, only BFPs are used to calculate the Voronoi diagram resulting in a Euclidean distance map. Experimental results indicate that the proposed method takes 40 Percent less computing time on average than Guan's method. To prove the performance of the proposed method, the computing time of Euclidean distance map by proposed method is compared with the computing time of Guan's method in 16 images that are binary and the size of 512${\times}$512.

Automated Water Surface Extraction in Satellite Images Using a Comprehensive Water Database Collection and Water Index Analysis

  • Anisa Nur Utami;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Monitoring water surface has become one of the most prominent areas of research in addressing environmental challenges.Accurate and automated detection of watersurface in remote sensing imagesis crucial for disaster prevention, urban planning, and water resource management, particularly for a country where water plays a vital role in human life. However, achieving precise detection poses challenges. Previous studies have explored different approaches,such as analyzing water indexes, like normalized difference water index (NDWI) derived from satellite imagery's visible or infrared bands and using k-means clustering analysis to identify land cover patterns and segment regions based on similar attributes. Nonetheless, challenges persist, notably distinguishing between waterspectralsignatures and cloud shadow or terrain shadow. In thisstudy, our objective is to enhance the precision of water surface detection by constructing a comprehensive water database (DB) using existing digital and land cover maps. This database serves as an initial assumption for automated water index analysis. We utilized 1:5,000 and 1:25,000 digital maps of Korea to extract water surface, specifically rivers, lakes, and reservoirs. Additionally, the 1:50,000 and 1:5,000 land cover maps of Korea aided in the extraction process. Our research demonstrates the effectiveness of utilizing a water DB product as our first approach for efficient water surface extraction from satellite images, complemented by our second and third approachesinvolving NDWI analysis and k-means analysis. The image segmentation and binary mask methods were employed for image analysis during the water extraction process. To evaluate the accuracy of our approach, we conducted two assessments using reference and ground truth data that we made during this research. Visual interpretation involved comparing our results with the global surface water (GSW) mask 60 m resolution, revealing significant improvements in quality and resolution. Additionally, accuracy assessment measures, including an overall accuracy of 90% and kappa values exceeding 0.8, further support the efficacy of our methodology. In conclusion, thisstudy'sresults demonstrate enhanced extraction quality and resolution. Through comprehensive assessment, our approach proves effective in achieving high accuracy in delineating watersurfaces from satellite images.