• Title/Summary/Keyword: Binary image

Search Result 991, Processing Time 0.024 seconds

A Study of Experimental Image Direction for Short Animation Movies -focusing in short film and (단편애니메이션의 실험적 영상연출 연구 -<탱고>와 <페스트 필름>을 중심으로)

  • Choi, Don-Ill
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.375-391
    • /
    • 2014
  • Animation movie is a non-photorealistic animated art that consists of formative language forming a frame based on a story and cuts describing frames that form the cuts. Therefore, in expressing an image, artistic expression methods and devices for a formative space are should be provided in a frame while cuts have the images between frames faithfully. Short animation movie is produced by various image experiments with unique image expressions rather than narration for expressing subjective discourse of a writer. Therefore, image style that forms unique images and various image directions are important factors. This study compared the experimental image directions of and , both of which showed a production method of film manipulation. First, while uses pixilation that produces images obtained from live images through painting and many optical disclosure process on a cell mat, was made with diverse collage techniques such as tearing, cutting, pasting, and folding hundreds of scenes from action movies. Second, expresses non-causal relationship of characters by their repetitive behaviors and circulatory image structure through a fixed camera angle, resisting typical scene transition. On the other hand, has an advancing structure that progresses antagonistic relationship of characters through diverse camera angles and scene transition of unique images. Third, in terms of editing, uses a long-take short cut technique in which the whole image consists of one short cut, though it seems to be many scenes with the appearance of various characters. On the other hand, maximizes visual fun and commitment by image reconstruction with hundreds of various short cuts. That is, both works have common features of an experimental work that shows expansion of animated image expressions through film manipulation that is different form general animation productions. On top of that, delivers routine life of diverse human beings without clear narration through image of conceptualized spaces. expresses it in a new image space through image reconstruction with collage technique and speedy progress, setting a binary opposition structure.

Implementation of a Self Controlled Mobile Robot with Intelligence to Recognize Obstacles (장애물 인식 지능을 갖춘 자율 이동로봇의 구현)

  • 류한성;최중경
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.312-321
    • /
    • 2003
  • In this paper, we implement robot which are ability to recognize obstacles and moving automatically to destination. we present two results in this paper; hardware implementation of image processing board and software implementation of visual feedback algorithm for a self-controlled robot. In the first part, the mobile robot depends on commands from a control board which is doing image processing part. We have studied the self controlled mobile robot system equipped with a CCD camera for a long time. This robot system consists of a image processing board implemented with DSPs, a stepping motor, a CCD camera. We will propose an algorithm in which commands are delivered for the robot to move in the planned path. The distance that the robot is supposed to move is calculated on the basis of the absolute coordinate and the coordinate of the target spot. And the image signal acquired by the CCD camera mounted on the robot is captured at every sampling time in order for the robot to automatically avoid the obstacle and finally to reach the destination. The image processing board consists of DSP (TMS320VC33), ADV611, SAA7111, ADV7l76A, CPLD(EPM7256ATC144), and SRAM memories. In the second part, the visual feedback control has two types of vision algorithms: obstacle avoidance and path planning. The first algorithm is cell, part of the image divided by blob analysis. We will do image preprocessing to improve the input image. This image preprocessing consists of filtering, edge detection, NOR converting, and threshold-ing. This major image processing includes labeling, segmentation, and pixel density calculation. In the second algorithm, after an image frame went through preprocessing (edge detection, converting, thresholding), the histogram is measured vertically (the y-axis direction). Then, the binary histogram of the image shows waveforms with only black and white variations. Here we use the fact that since obstacles appear as sectional diagrams as if they were walls, there is no variation in the histogram. The intensities of the line histogram are measured as vertically at intervals of 20 pixels. So, we can find uniform and nonuniform regions of the waveforms and define the period of uniform waveforms as an obstacle region. We can see that the algorithm is very useful for the robot to move avoiding obstacles.

Measurement Algorithm of Vehicle Speed Using Real-Time Image Processing (영상의 실시간 처리에 의한 차량 속도의 계측 알고리즘)

  • Seo, Jeong-Goo;Lee, Jeong-Goo;Yun, Tae-Won;Hwang, Byong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2005
  • These studies developed system as well as its algorithm which can measure traffic flow and vehicle speed on the highway as well as road by using industrial television(ITV) system. This algorithm used the real time processing of dynamic images. The processing algorithm of dynamic images is developed and proved its validity by frame grabber. Frame grabber can process the information of a small number of sample points only instead of the whole pixel of the images. In the techniques of this algorithm, we made approximate contour of vehicle by allocating sampling points in cross-direction of image, and recognized top of contour of vehicle. Applying these technique, we measured the number of passing vehicles of one lane as well as multilane. Speed of each vehicle is measured by computing the time difference between a pair of sample points on two sample points lines.

  • PDF

Face Recognition based on Weber Symmetrical Local Graph Structure

  • Yang, Jucheng;Zhang, Lingchao;Wang, Yuan;Zhao, Tingting;Sun, Wenhui;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1748-1759
    • /
    • 2018
  • Weber Local Descriptor (WLD) is a stable and effective feature extraction algorithm, which is based on Weber's Law. It calculates the differential excitation information and direction information, and then integrates them to get the feature information of the image. However, WLD only considers the center pixel and its contrast with its surrounding pixels when calculating the differential excitation information. As a result, the illumination variation is relatively sensitive, and the selection of the neighbor area is rather small. This may make the whole information is divided into small pieces, thus, it is difficult to be recognized. In order to overcome this problem, this paper proposes Weber Symmetrical Local Graph Structure (WSLGS), which constructs the graph structure based on the $5{\times}5$ neighborhood. Then the information obtained is regarded as the differential excitation information. Finally, we demonstrate the effectiveness of our proposed method on the database of ORL, JAFFE and our own built database, high-definition infrared faces. The experimental results show that WSLGS provides higher recognition rate and shorter image processing time compared with traditional algorithms.

Improved shape-based interpolation for three-dimensional reconstruction in gray-scale images (3차원 그레이-스케일 영상 재구성을 위한 개선된 형태-기반 보간)

  • Kim Hong, Helen;Park, Joo-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Using a series of medical tomograms, we can reconstruct internal organs or other objects of interest and generate 3-D images. It is generally accepted that the axial resolution determined by two sequential image slices is lower than the planar resolution in one image slices. Therefore, various methods of interpolation were developed for an accurate display of reconstructed images. In this paper, a new algorithm for 3-D reconstruction of the medical images such as MRI and X-ray CT is suggested. The algorithm is shape-based and utilizes parts of the gray-level information. We extend the conventional shape-based interpolation of the binary images to the gray-scale images using the shortest distance map. Using this new algorithm, We could reduce the execution time for interpolation while keeping similar high quality of the reconstructed images with reduced execution time and is applicable to the various medical tomograms.

  • PDF

Destination Address Block Location on Machine-printed and Handwritten Korean Mail Piece Images (인쇄 및 필기 한글 우편영상에서의 수취인 주소 영역 추출 방법)

  • 정선화;장승익;임길택;남윤석
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.8-19
    • /
    • 2004
  • In this paper, we propose an efficient method for locating destination address block on both of machine-Printed and handwritten Korean mail piece images. The proposed method extracts connected components from the binary mail piece image, generates text lines by merging them, and then groups the text fines into nine clusters. The destination address block is determined by selecting some clusters. Considering the geometric characteristics of address information on Korean mail piece, we split a mail piece image into nine areas with an equal size. The nine clusters are initialized with the center coordinate of each area. A modified Manhattan distance function is used to compute the distance between text lines and clusters. We modified the distance function on which the aspect ratio of mail piece could be reflected. The experiment done with live Korean mail piece images has demonstrated the superiority of the Proposed method. The success rate for 1, 988 testing images was about 93.56%.

Obtaining Object by Using Optimal Threshold for Saliency Map Thresholding (Saliency Map을 이용한 최적 임계값 기반의 객체 추출)

  • Hai, Nguyen Cao Truong;Kim, Do-Yeon;Park, Hyuk-Ro
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.18-25
    • /
    • 2011
  • Salient object attracts more and more attention from researchers due to its important role in many fields of multimedia processing like tracking, segmentation, adaptive compression, and content-base image retrieval. Usually, a saliency map is binarized into black and white map, which is considered as the binary mask of the salient object in the image. Still, the threshold is heuristically chosen or parametrically controlled. This paper suggests using the global optimal threshold to perform saliency map thresholding. This work also considers the usage of multi-level optimal thresholds and the local adaptive thresholds in the experiments. These experimental results show that using global optimal threshold method is better than parametric controlled or local adaptive threshold method.

Autonomous Battle Tank Detection and Aiming Point Search Using Imagery (영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구)

  • Kim, Jong-Hwan;Jung, Chi-Jung;Heo, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This paper presents an autonomous detection and aiming point computation of a battle tank by using RGB images. Maximally stable extremal regions algorithm was implemented to find features of the tank, which are matched with images extracted from streaming video to figure out the region of interest where the tank is present. The median filter was applied to remove noises in the region of interest and decrease camouflage effects of the tank. For the tank segmentation, k-mean clustering was used to autonomously distinguish the tank from its background. Also, both erosion and dilation algorithms of morphology techniques were applied to extract the tank shape without noises and generate the binary image with 1 for the tank and 0 for the background. After that, Sobel's edge detection was used to measure the outline of the tank by which the aiming point at the center of the tank was calculated. For performance measurement, accuracy, precision, recall, and F-measure were analyzed by confusion matrix, resulting in 91.6%, 90.4%, 85.8%, and 88.1%, respectively.

Object Recognition Method for Industrial Intelligent Robot (산업용 지능형 로봇의 물체 인식 방법)

  • Kim, Kye Kyung;Kang, Sang Seung;Kim, Joong Bae;Lee, Jae Yeon;Do, Hyun Min;Choi, Taeyong;Kyung, Jin Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.901-908
    • /
    • 2013
  • The introduction of industrial intelligent robot using vision sensor has been interested in automated factory. 2D and 3D vision sensors have used to recognize object and to estimate object pose, which is for packaging parts onto a complete whole. But it is not trivial task due to illumination and various types of objects. Object image has distorted due to illumination that has caused low reliability in recognition. In this paper, recognition method of complex shape object has been proposed. An accurate object region has detected from combined binary image, which has achieved using DoG filter and local adaptive binarization. The object has recognized using neural network, which is trained with sub-divided object class according to object type and rotation angle. Predefined shape model of object and maximal slope have used to estimate the pose of object. The performance has evaluated on ETRI database and recognition rate of 96% has obtained.

Walking assistance system using texture for visually impaired person (질감 특징을 이용한 시각장애인용 보행유도 시스템)

  • Weon, Sun-Hee;Choi, Hyun-Gil;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.77-85
    • /
    • 2011
  • In this paper, we propose an region segmentation and texture based feature extraction method which split the pavement and roadway from the camera which equipped to the visually impaired person during a walk. We perform the hough transformation method for detect the boundary between pavement and roadway, and devide the segmented region into 3-level according to perspective. Next step, split into pavement and roadway according to the extracted texture feature of segmented regions. Our walking assistance system use rotation-invariant LBP and GLCM texture features for compare the characteristic of pavement block with various pattern and uniformity roadway. Our proposed method show that can segment two regions with illumination invariant in day and night image, and split there regions rotation and occlution invariant in complexed outdoor image.