• Title/Summary/Keyword: Binary image

Search Result 987, Processing Time 0.035 seconds

A Study on Target Acquisition and Tracking to Develop ARPA Radar (ARPA 레이더 개발을 위한 물표 획득 및 추적 기술 연구)

  • Lee, Hee-Yong;Shin, Il-Sik;Lee, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.307-312
    • /
    • 2015
  • ARPA(Automatic Radar Plotting Aid) is a device to calculate CPA(closest point of approach)/TCPA(time of CPA), true course and speed of targets by vector operation of relative courses and speeds. The purpose of this study is to develop target acquisition and tracking technology for ARPA Radar implementation. After examining the previous studies, applicable algorithms and technologies were developed to be combined and basic ARPA functions were developed as a result. As for main research contents, the sequential image processing technology such as combination of grayscale conversion, gaussian smoothing, binary image conversion and labeling was deviced to achieve a proper target acquisition, and the NNS(Nearest Neighbor Search) algorithm was appllied to identify which target came from the previous image and finally Kalman Filter was used to calculate true course and speed of targets as an analysis of target behavior. Also all technologies stated above were implemented as a SW program and installed onboard, and verified the basic ARPA functions to be operable in practical use through onboard test.

COF Defect Detection and Classification System Based on Reference Image (참조영상 기반의 COF 결함 검출 및 분류 시스템)

  • Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1899-1907
    • /
    • 2013
  • This paper presents an efficient defect detection and classification system based on reference image for COF (Chip-on-Film) which encounters fatal defects after ultra fine pattern fabrication. These defects include typical ones such as open, mouse bite (near open), hard short and soft short. In order to detect these defects, conventionally it needs visual examination or electric circuits. However, these methods requires huge amount of time and money. In this paper, based on reference image, the proposed system detects fatal defect and efficiently classifies it to one of 4 types. The proposed system includes the preprocessing of the test image, the extraction of ROI, the analysis of local binary pattern and classification. Through simulations with lots of sample images, it is shown that the proposed system is very efficient in reducing huge amount of time and money for detecting the defects of ultra fine pattern COF.

Image-Based Machine Learning Model for Malware Detection on LLVM IR (LLVM IR 대상 악성코드 탐지를 위한 이미지 기반 머신러닝 모델)

  • Kyung-bin Park;Yo-seob Yoon;Baasantogtokh Duulga;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • Recently, static analysis-based signature and pattern detection technologies have limitations due to the advanced IT technologies. Moreover, It is a compatibility problem of multiple architectures and an inherent problem of signature and pattern detection. Malicious codes use obfuscation and packing techniques to hide their identity, and they also avoid existing static analysis-based signature and pattern detection techniques such as code rearrangement, register modification, and branching statement addition. In this paper, We propose an LLVM IR image-based automated static analysis of malicious code technology using machine learning to solve the problems mentioned above. Whether binary is obfuscated or packed, it's decompiled into LLVM IR, which is an intermediate representation dedicated to static analysis and optimization. "Therefore, the LLVM IR code is converted into an image before being fed to the CNN-based transfer learning algorithm ResNet50v2 supported by Keras". As a result, we present a model for image-based detection of malicious code.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

Performance Comparison and Analysis between Keypoints Extraction Algorithms using Drone Images (드론 영상을 이용한 특징점 추출 알고리즘 간의 성능 비교)

  • Lee, Chung Ho;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • Images taken using drones have been applied to fields that require rapid decision-making as they can quickly construct high-quality 3D spatial information for small regions. To construct spatial information based on drone images, it is necessary to determine the relationship between images by extracting keypoints between adjacent drone images and performing image matching. Therefore, in this study, three study regions photographed using a drone were selected: a region where parking lots and a lake coexisted, a downtown region with buildings, and a field region of natural terrain, and the performance of AKAZE (Accelerated-KAZE), BRISK (Binary Robust Invariant Scalable Keypoints), KAZE, ORB (Oriented FAST and Rotated BRIEF), SIFT (Scale Invariant Feature Transform), and SURF (Speeded Up Robust Features) algorithms were analyzed. The performance of the keypoints extraction algorithms was compared with the distribution of extracted keypoints, distribution of matched points, processing time, and matching accuracy. In the region where the parking lot and lake coexist, the processing speed of the BRISK algorithm was fast, and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the downtown region with buildings, the processing speed of the AKAZE algorithm was fast and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the field region of natural terrain, the keypoints and matched points of the SURF algorithm were evenly distributed throughout the image taken by drone, but the AKAZE algorithm showed the highest matching accuracy and processing speed.

A study on the design of an efficient hardware and software mixed-mode image processing system for detecting patient movement (환자움직임 감지를 위한 효율적인 하드웨어 및 소프트웨어 혼성 모드 영상처리시스템설계에 관한 연구)

  • Seungmin Jung;Euisung Jung;Myeonghwan Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • In this paper, we propose an efficient image processing system to detect and track the movement of specific objects such as patients. The proposed system extracts the outline area of an object from a binarized difference image by applying a thinning algorithm that enables more precise detection compared to previous algorithms and is advantageous for mixed-mode design. The binarization and thinning steps, which require a lot of computation, are designed based on RTL (Register Transfer Level) and replaced with optimized hardware blocks through logic circuit synthesis. The designed binarization and thinning block was synthesized into a logic circuit using the standard 180n CMOS library and its operation was verified through simulation. To compare software-based performance, performance analysis of binary and thinning operations was also performed by applying sample images with 640 × 360 resolution in a 32-bit FPGA embedded system environment. As a result of verification, it was confirmed that the mixed-mode design can improve the processing speed by 93.8% in the binary and thinning stages compared to the previous software-only processing speed. The proposed mixed-mode system for object recognition is expected to be able to efficiently monitor patient movements even in an edge computing environment where artificial intelligence networks are not applied.

Horse Hoof Shaped Object Detection in Satellite Images (위성영상에서 말발굽 형상을 갖는 관심물체 탐색 방법)

  • Lim, In-Geun;Ra, Sung-Woong
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1019-1027
    • /
    • 2017
  • As high resolution satellite images can be used, numerous studies have been carried out for exploiting these images in various fields. This paper proposes horse hoof shaped object detection method based on mathematical morphology to extract interesting targets. Interesting targets have conceptually similar shapes such as a horse hoof, not having exact size or shape. Detection of an object with the similar shapes is possible by applying mathematical morphology processes. The proposed method allows an automatic object detection system to detect the meaningful object in a large satellite image rapidly. The mathematical morphology process can be applied to binary images, and thus this method is very simple. Therefore, this method can easily extract a "horse hoof shaped object" from any image that has indistinct edges of the interesting object and different image qualities depending on the filming location, filming time, and filming environment. Using the proposed method by which a "horse hoof shaped object" can be rapidly extracted, the performance of the automatic object detection system can be improved.

A Techniques for Information Hiding in the Steganography using LSB and Genetic Algorithm (유전적 알고리즘과 LSB를 이용한 스테가노그래피의 정보은닉 기법)

  • Ji, Seon-Su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.277-282
    • /
    • 2018
  • The goal of the secret message communication on the internet is to maintain invisibility and confidentiality. Digital steganography is a technique in which a secret message is inserted in a cover medium and transmitted to a destination so that a third party can not perceive the existence of the message itself. Steganography is an efficient method for ensuring confidentiality and integrity together with encryption techniques. In order to insert a secret (Hangul) message, I propose a image steganography method that the secret character is separated and converted into binary code with reference to the encryption table, the cover image is divided into two areas, and the secret message and the right l-LSB information of the second area are encrypted and crossed, concealing the k-LSB of the first region. The experimental results of the proposed method show that the PSNR value is 52.62 and the acceptable image quality level.

Measurement of Fiber Board Poisson's Ratio using High-Speed Digital Camera

  • Choi, Seung-Ryul;Choi, Dong-Soo;Oh, Sung-Sik;Park, Suk-Ho;Kim, Jin-Se;Chun, Ho-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.324-329
    • /
    • 2014
  • Purpose: The finite element method (FEM) is advantageous because it can save time and cost by reducing the number of samples and experiments in the effort to identify design factors. In computational problem-solving it is necessary that the exact material properties are input for achieving a reliable analysis. However, in the case of fiber boards, it is difficult to measure their cross-directional material properties because of their small thickness. In previous research studies, the Poisson's ratio was measured by analyzing ultrasonic wave velocities. Recently, the Poisson's ratio was measured using a high-speed digital camera. In this study, we measured the transverse strain of a fiber board and calculated its Poisson's ratio using a high-speed digital camera in order to apply these estimates to a FEM analysis of a fiber board, a corrugated board, and a corrugated box. Methods: Three different fiber board samples were used in a uniaxial tensile test. The longitudinal strain was measured using the Universal Testing Machine. The transverse strain was measured using an image processing method. To calculate the transverse strain, we acquired images of the fiber board before the test onset and before the fracture occurred. Acquired images were processed using the image processing program MATLAB. After the images were converted from color to binary, we calculated the width of the fiber board. Results: The calculated Poisson's ratio ranged between 0.2968-0.4425 (Machine direction, MD) and 0.1619-0.1751 (Cross machine direction, CD). Conclusions: This study demonstrates that measurement of the transverse properties of a fiber board is possible using image processing methods. Correspondingly, these processing methods could be used to measure material properties that are difficult to measure using conventional measuring methodologies that employ strain gauge extensometers.

The Study of Edge Extract Methods Using Improved Detect Mask (개선된 검출 마스크를 이용한 에지추출 방법들에 관한 연구)

  • Shin, Choong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.191-199
    • /
    • 2009
  • In this paper, the improved edge extract methods is proposed in order to extract edge. For the correct and fast detect, the binary image using the threshold value is applied for a experiment. For the experimental analysis, we compare the existing edge methods with the improved methods. Hereby, the exist methods are the sobel, robert, and prewitt. and the improved methods use the existing methods which is applied mask variations. The merits of the improved mothods have a result of a little erosion, a apparent edge. Specially, we use the grey image of medical image for the experimental analysis and then apply threshold value for a result image. After that, we acquire a apparent edge. For a quantitative analysis of the each methods, the each images was applied a histogram. As a result, we prove the merit of the improved methods using a analytical graph of the medical images.

  • PDF