• Title/Summary/Keyword: Binary fuel

Search Result 45, Processing Time 0.019 seconds

Calculation of fuel temperature profile for heavy water moderated natural uranium oxide fuel using two gas mixture conductance model for noble gas Helium and Xenon

  • Jha, Alok;Gupta, Anurag;Das, Rajarshi;Paraswar, Shantanu D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2760-2770
    • /
    • 2020
  • A model for calculation of fuel temperature profile using binary gas mixture of Helium and Xenon for gap gas conductance is proposed here. In this model, the temperature profile of a fuel pencil from fuel centreline to fuel surface has been calculated by taking into account the dilution of Helium gas filled during fuel manufacturing due to accumulation of fission gas Xenon. In this model an explicit calculation of gap gas conductance of binary gas mixture of Helium and Xenon has been carried out. A computer code Fuel Characteristics Calculator (FCCAL) is developed for the model. The phenomena modelled by FCCAL takes into account heat conduction through the fuel pellet, heat transfer from pellet surface to the cladding through the gap gas and heat transfer from cladding to coolant. The binary noble gas mixture model used in FCCAL is an improvement over the parametric model of Lassmann and Pazdera. The results obtained from the code FCCAL is used for fuel temperature calculation in 3-D neutron diffusion solver for the coolant outlet temperature of the core at steady operation at full power. It is found that there is an improvement in calculation time without compromising accuracy with FCCAL.

Correlation between rare earth elements in the chemical interactions of HT9 cladding

  • Lee, Eun Byul;Lee, Byoung Oon;Shim, Woo-Yong;Kim, Jun Hwan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.915-922
    • /
    • 2018
  • Metallic fuel has been considered for sodium-cooled fast reactors because it can maximize the uranium resources. It generates rare earth elements as fission products, where it is reported by aggravating the fuel-cladding chemical interaction at the operating temperature. Rare earth elements form a multicomponent alloy (Ce-Nd-Pr-La-Sm-etc.) during reactor operation, where it shows a higher reaction thickness than a single element. Experiments have been carried out by simplifying multicomponent alloys for mono or binary systems because complex alloys have difficulty in the analysis. In previous experiments, xCe-yNd was fabricated with two elements, Ce and Nd, which have a major effect on the fuel-cladding chemical interaction, and the thickness of the reaction layer reached maximum when the rare earth elements ratio was 1:1. The objective of this study is to evaluate the effect and relationship of rare earth elements on such synergistic behavior. Single and binary rare earth model alloys were prepared by selecting five rare earth elements (Ce, Nd, Pr, La, and Sm). In the single system, Nd and Pr behaviors were close to diffusion, and Ce showed a eutectic reaction. In the binary system, Ce and Sm further increased the reaction layer, and La showed a non-synergy effect.

Methanol oxidation behaviors of PtRu nanoparticles deposited onto binary carbon supports for direct methanol fuel cells

  • Park, Soo-Jin;Park, Jeong-Min;Lee, Seul-Yi
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • In this study, PtRu nanoparticles deposited on binary carbon supports were developed for use in direct methanol fuel cells using carbon blacks (CBs) and multi-walled carbon nanotubes (MWCNTs). The particle sizes and morphological structures of the catalysts were analyzed using X-ray diffraction and transmission electron microscopy, and the PtRu loading content was determined using an inductively coupled plasma-mass spectrometer. The electrocatalytic characteristics for methanol oxidation were evaluated by means of cyclic voltammetry with 1 M $CH_3OH$ in a 0.5 M $H_2SO_4$ solution as the electrolyte. The PtRu particle sizes and the loading level were found to be dependent on the mixing ratio of the two carbon materials. The electroactivity of the catalysts increased with an increasing MWCNT content, reaching a maximum at 30% MWCNTs, and subsequently decreased. This was attributed to the introduction of MWCNTs as a secondary support, which provided a highly accessible surface area and caused morphological changes in the carbon supports. Consequently, the PtRu nanoparticles deposited on the binary support exhibited better performance than those deposited on the single support, and the best performance was obtained when the mass ratio of CBs to MWCNTs was 70:30.

Experimental Study on Microexplosive Burning of Binary Fuel Droplets (이성분 연료 액적 연소에 관한 실험적 연구)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.110-119
    • /
    • 2005
  • The combustion characteristics of binary component single droplets hanging at the tip of a quartz fiber are studied experimentally at different environmental pressures and temperatures under normal gravity. Normal Heptane and Normal Hexadecane are selected as two fuels with high difference in boiling temperatures. A falling electrical furnace in a high pressure vessel has provided high temperature environment. Nitrogen and air have formed the environment to study evaporation and combustion, respectively. The initial diameter of droplet was ranging from 1.1 to 1.3 mm. The evaporation and combustion processes were recorded by a high speed digital camera. Some characteristics of droplet burning under different environment conditions and different droplet composition have been investigated. Microexplosion of droplet take places under atmospheric pressure. Bubble formation and its consequent result, incomplete droplet disintegration which presents in all binary compositions, do not appear at high pressure. The initiation of combustion, always takes place in the bottom of droplet due to buoyancy effect of relatively cold fuel vapor. Also, the burning of binary droplet produces soot when the pressure is high.

  • PDF

Laser Welding of Seal Tube for Instrumented Irradiation Fuel Test (계장핵연료 조사시험용 실튜브 레이저용접기술)

  • Kim Soo-Sung;Lee Chul-Yong;Kim Woong-Ki;Park Geun-Il;Koh Jinh-Yun;Seo Jun-Seok
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.43-48
    • /
    • 2005
  • This work was carried out to obtain sound welds and to select a most suitable binary metal joint among three different dissimilar binary metal combinations such as Zr-4/Ta, Mo/Ta and Ti/Ta(seal tube/sensor sheath) joints fur the instrumented nuclear fuel irradiation test. To do this, Taguchi experimental method was employed to optimize the experimental data. In addition, metallography, micro-focus x-ray radiography and hardness test were conducted to examine the welds. From the weld bead appearance, penetration depth and bead width as well as weld defects standpoint, Zr-4/Ta joint is suggested for the circumferential joining between a seal tube and a sensor sheath. The optimized welding parameters based on Zr-4/Ta joint are suggested as well.

A Feasibility Study on the Brazing of Zircaloy-4 with Zr-Be Binary Amorphous Filler Metals (비정질 이원계 합금 Zr-Be 용가재를 이용한 지르칼로이-4의 브레이징 타당성 검토)

  • 고진현;박춘호;김수성
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.26-31
    • /
    • 1999
  • An attempt was made in this study to investigate the brazing characteristics of Zr-Be binary amorphous alloys for the development of a new brazing filler metal for joining Zircaloy-4 nuclear fuel cladding tubes. This study was also aimed at the feasibility study of rapidly solidified amorphous alloys to substitute the conventional physical vapor-deposited(PVD) metallic beryllium. The $Zr_{1-x}Be_{x}$($0.3\leq$x$\leq0.5$) binary amorphous alloys were produced in the ribbon form by the melt-spinning method. It was confirmed by x-ray diffraction that the ribbons were amorphous. The amorphous. the amorphous alloys were used to join bearing pads on Zircaloy-4 nuclear fuel cladding tubes. Using Zr-Be amorphous alloys as filler metals, it was found that the reduction in the tube wall thickness caused by erosion was prevented. Especially, in the case of using $Zr_{0.65}Be_{0.35}$ and $Zr_{0.7}Be_{0.3}$ amorphousalloys, the smooth and spherical primary $\alpha$-Zr particles appeared in the brazed layer, which was the most desirable microstructure from the corrosion-resistance standpoint.

  • PDF

Experimental Investigation of Collision Mechanisms Between Binary Droplet of Fuel Jet (연료 제트의 두 액적간의 충돌기구에 관한 실험적 연구)

  • Lee, Keun-Hee;Kim, Sa-Yop;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.187-192
    • /
    • 2008
  • In this study, the mechanisms of binary droplet collision were studied with diesel, ethanol and purified water. The droplet collisions of liquid droplet have been investigated for the same droplet diameter. In order to obtain the digital images of the droplet collision behavior, the experimental equipment was composed of the droplet generating system and the droplet visualization system. The droplets were produced by the vibrating orifice monodisperse generator. The visualization system consisted of a long distance microscope, a light source, and a high speed camera. The outcomes of binary droplet collision can be divided into four regimes, bouncing, coalescence, reflexive separation and stretching separation. The impact angle and the relative velocity of binary droplet are main parameters of collision phenomena, so the transition mechanism of droplet collision can be divided by the impact parameter.

  • PDF

The investigation on the Ignition Delay of n-heptane/n-butanol Blend Fuel Using a Rapid Compression Machine at Low Temperature Combustion Regime (저온연소조건에서 급속압축기를 이용한 n-heptane/n-butanol 혼합연료의 착화지연에 관한 연구)

  • Song, Jae Hyeok;Kang, Ki Joong;Yang, Zheng;Lu, XingCai;Choi, Gyung Min;Kim, Duck Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.32-41
    • /
    • 2013
  • This study presents both experimental and numerical investigation of ignition delay time of n-heptane and n-butanol binary fuel. The $O_2$ concentration in the mixture was set to 9-10% to make high exhaust gas recirculation( EGR) rate condition which leads low NOx and soot emission. Experiments were performed using a rapid compression machine(RCM) at compressed pressure 20bar, several compressed temperature and three equivalence ratios(0.4, 1.0, 1.5). In addition, a numerical study on the ignition delay time was performed using CHEMKIN codes to validate experimental results and predict chemical species in the combustion process. The results showed that the ignition delay time increased with increasing the n-butanol fraction due to a decrease of oxidation of n-heptane at the low temperature. Moreover, all of the binary fuel mixtures showed the combustion characteristics of n-heptane such as cool flame mode at low temperature and negative-temperature-coefficient(NTC) behavior. Due to the effect of high EGR rate condition, the operating region is reduced at lean condition and the ignition delay time sharply increased compared with no EGR condition.

Microexplosive Vaporization of Miscible Binary Fuel Droplets (미세폭발을 가진 혼화 이성분 연료 액적의 증발 현상)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.120-131
    • /
    • 2005
  • The evaporation characteristics of single and multicomponent droplets hanging at the tip of a quartz fiber are studied experimentally at the different environmental conditions under normal gravity. Heptane and Hexadecane are selected as two fuels with different evaporation rates and boiling temperatures. At the first step, the evaporation of single component droplet of both fuels has been examined separately. At the next step the evaporation of several blends of these two fuels, as a binary component droplet, has been studied. The temperature and pressure range is selected between 400 and 700 $^{\circ}C$, and 0.1 and 2.5 MPa, respectively. High temperature environment has been provided by a falling electrical furnace. The initial diameter of droplet was in range of 1.1 and 1.3 mm. The evaporation process was recorded by a high speed CCD camera. The results of binary droplet evaporation show the three staged evaporation. In the the first stage the more volatile component evaporates. The droplet temperature rises after an almost non evaporating period and in the third stage a quasi linear evaporation takes place. The evaporation of the binary droplet at low pressure is accompanied with bubble formation and droplet fragmentation and leads to incomplete microexplosion. The component concentration affects the evaporation behavior of the first two stages. The bubble formation and droplet distortion does not appear at high environment pressure. Nomenclature

  • PDF