• Title/Summary/Keyword: Binary Tree algorithm

Search Result 128, Processing Time 0.025 seconds

GOP Adaptation Coding of H.264/SVC Based on Precise Positions of Video Cuts

  • Liu, Yunpeng;Wang, Renfang;Xu, Huixia;Sun, Dechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2449-2463
    • /
    • 2014
  • Hierarchical B-frame coding was introduced into H.264/SVC to provide temporal scalability and improve coding performance. A content analysis-based adaptive group of picture structure (AGS) can further improve the coding efficiency, but damages the inter-frame correlation and temporal scalability of hierarchical B-frame to different degrees. In this paper, we propose a group of pictures (GOP) adaptation coding method based on the positions of video cuts. First, the cut positions are accurately detected by the combination of motion coherence (MC) and mutual information (MI); then the GOP is adaptively and proportionately set by the analysis of MC in one scene. In addition, we propose a binary tree algorithm to achieve the temporal scalability of any size of GOP. The results for test sequences and real videos show that the proposed method reduces the bit rate by up to about 15%, achieves a performance gain of about 0.28-1.67 dB over a fixed GOP, and has the advantages of better transmission resilience and video summaries.

Mutual Information Analysis for Three-Phase Dynamic Current Mode Logic against Side-Channel Attack

  • Kim, Hyunmin;Han, Dong-Guk;Hong, Seokhie
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.584-594
    • /
    • 2015
  • To date, many different kinds of logic styles for hardware countermeasures have been developed; for example, SABL, TDPL, and DyCML. Current mode-based logic styles are useful as they consume less power compared to voltage mode-based logic styles such as SABL and TDPL. Although we developed TPDyCML in 2012 and presented it at the WISA 2012 conference, we have further optimized it in this paper using a binary decision diagram algorithm and confirmed its properties through a practical implementation of the AES S-box. In this paper, we will explain the outcome of HSPICE simulations, which included correlation power attacks, on AES S-boxes configured using a compact NMOS tree constructed from either SABL, CMOS, TDPL, DyCML, or TPDyCML. In addition, to compare the performance of each logic style in greater detail, we will carry out a mutual information analysis (MIA). Our results confirm that our logic style has good properties as a hardware countermeasure and 15% less information leakage than those secure logic styles used in our MIA.

Combined Image Retrieval System using Clustering and Condensation Method (클러스터링과 차원축약 기법을 통합한 영상 검색 시스템)

  • Lee Se-Han;Cho Jungwon;Choi Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.1 s.307
    • /
    • pp.53-66
    • /
    • 2006
  • This paper proposes the combined image retrieval system that gives the same relevance as exhaustive search method while its performance can be considerably improved. This system is combined with two different retrieval methods and each gives the same results that full exhaustive search method does. Both of them are two-stage method. One uses condensation of feature vectors, and the other uses binary-tree clustering. These two methods extract the candidate images that always include correct answers at the first stage, and then filter out the incorrect images at the second stage. Inasmuch as these methods use equal algorithm, they can get the same result as full exhaustive search. The first method condenses the dimension of feature vectors, and it uses these condensed feature vectors to compute similarity of query and images in database. It can be found that there is an optimal condensation ratio which minimizes the overall retrieval time. The optimal ratio is applied to first stage of this method. Binary-tree clustering method, searching with recursive 2-means clustering, classifies each cluster dynamically with the same radius. For preserving relevance, its range of query has to be compensated at first stage. After candidate clusters were selected, final results are retrieved by computing similarities again at second stage. The proposed method is combined with above two methods. Because they are not dependent on each other, combined retrieval system can make a remarkable progress in performance.

A Region-based Comparison Algorithm of k sets of Trapezoids (k 사다리꼴 셋의 영역 중심 비교 알고리즘)

  • Jung, Hae-Jae
    • The KIPS Transactions:PartA
    • /
    • v.10A no.6
    • /
    • pp.665-670
    • /
    • 2003
  • In the applications like automatic masks generation for semiconductor production, a drawing consists of lots of polygons that are partitioned into trapezoids. The addition/deletion of a polygon to/from the drawing is performed through geometric operations such as insertion, deletion, and search of trapezoids. Depending on partitioning algorithm being used, a polygon can be partitioned differently in terms of shape, size, and so on. So, It's necessary to invent some comparison algorithm of sets of trapezoids in which each set represents interested parts of a drawing. This comparison algorithm, for example, may be used to verify a software program handling geometric objects consisted of trapezoids. In this paper, given k sets of trapezoids in which each set forms the regions of interest of each drawing, we present how to compare the k sets to see if all k sets represent the same geometric scene. When each input set has the same number n of trapezoids, the algorithm proposed has O(2$^{k-2}$ $n^2$(log n+k)) time complexity. It is also shown that the algorithm suggested has the same time complexity O( $n^2$ log n) as the sweeping-based algorithm when the number k(<< n) of input sets is small. Furthermore, the proposed algorithm can be kn times faster than the sweeping-based algorithm when all the trapezoids in the k input sets are almost the same.

A Comparative Study of Prediction Models for College Student Dropout Risk Using Machine Learning: Focusing on the case of N university (머신러닝을 활용한 대학생 중도탈락 위험군의 예측모델 비교 연구 : N대학 사례를 중심으로)

  • So-Hyun Kim;Sung-Hyoun Cho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.2
    • /
    • pp.155-166
    • /
    • 2024
  • Purpose : This study aims to identify key factors for predicting dropout risk at the university level and to provide a foundation for policy development aimed at dropout prevention. This study explores the optimal machine learning algorithm by comparing the performance of various algorithms using data on college students' dropout risks. Methods : We collected data on factors influencing dropout risk and propensity were collected from N University. The collected data were applied to several machine learning algorithms, including random forest, decision tree, artificial neural network, logistic regression, support vector machine (SVM), k-nearest neighbor (k-NN) classification, and Naive Bayes. The performance of these models was compared and evaluated, with a focus on predictive validity and the identification of significant dropout factors through the information gain index of machine learning. Results : The binary logistic regression analysis showed that the year of the program, department, grades, and year of entry had a statistically significant effect on the dropout risk. The performance of each machine learning algorithm showed that random forest performed the best. The results showed that the relative importance of the predictor variables was highest for department, age, grade, and residence, in the order of whether or not they matched the school location. Conclusion : Machine learning-based prediction of dropout risk focuses on the early identification of students at risk. The types and causes of dropout crises vary significantly among students. It is important to identify the types and causes of dropout crises so that appropriate actions and support can be taken to remove risk factors and increase protective factors. The relative importance of the factors affecting dropout risk found in this study will help guide educational prescriptions for preventing college student dropout.

Sleep Deprivation Attack Detection Based on Clustering in Wireless Sensor Network (무선 센서 네트워크에서 클러스터링 기반 Sleep Deprivation Attack 탐지 모델)

  • Kim, Suk-young;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.83-97
    • /
    • 2021
  • Wireless sensors that make up the Wireless Sensor Network generally have extremely limited power and resources. The wireless sensor enters the sleep state at a certain interval to conserve power. The Sleep deflation attack is a deadly attack that consumes power by preventing wireless sensors from entering the sleep state, but there is no clear countermeasure. Thus, in this paper, using clustering-based binary search tree structure, the Sleep deprivation attack detection model is proposed. The model proposed in this paper utilizes one of the characteristics of both attack sensor nodes and normal sensor nodes which were classified using machine learning. The characteristics used for detection were determined using Long Short-Term Memory, Decision Tree, Support Vector Machine, and K-Nearest Neighbor. Thresholds for judging attack sensor nodes were then learned by applying the SVM. The determined features were used in the proposed algorithm to calculate the values for attack detection, and the threshold for determining the calculated values was derived by applying SVM.Through experiments, the detection model proposed showed a detection rate of 94% when 35% of the total sensor nodes were attack sensor nodes and improvement of up to 26% in power retention.

Real-time Watermarking Algorithm using Multiresolution Statistics for DWT Image Compressor (DWT기반 영상 압축기의 다해상도의 통계적 특성을 이용한 실시간 워터마킹 알고리즘)

  • 최순영;서영호;유지상;김대경;김동욱
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.6
    • /
    • pp.33-43
    • /
    • 2003
  • In this paper, we proposed a real-time watermarking algorithm to be combined and to work with a DWT(Discrete Wavelet Transform)-based image compressor. To reduce the amount of computation in selecting the watermarking positions, the proposed algorithm uses a pre-established look-up table for critical values, which was established statistically by computing the correlation according to the energy values of the corresponding wavelet coefficients. That is, watermark is embedded into the coefficients whose values are greater than the critical value in the look-up table which is searched on the basis of the energy values of the corresponding level-1 subband coefficients. Therefore, the proposed algorithm can operate in a real-time because the watermarking process operates in parallel with the compression procession without affecting the operation of the image compression. Also it improved the property of losing the watermark and the efficiency of image compression by watermark inserting, which results from the quantization and Huffman-Coding during the image compression. Visual recognizable patterns such as binary image were used as a watermark The experimental results showed that the proposed algorithm satisfied the properties of robustness and imperceptibility that are the major conditions of watermarking.

The Recognition of Occluded 2-D Objects Using the String Matching and Hash Retrieval Algorithm (스트링 매칭과 해시 검색을 이용한 겹쳐진 이차원 물체의 인식)

  • Kim, Kwan-Dong;Lee, Ji-Yong;Lee, Byeong-Gon;Ahn, Jae-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.7
    • /
    • pp.1923-1932
    • /
    • 1998
  • This paper deals with a 2-D objects recognition algorithm. And in this paper, we present an algorithm which can reduce the computation time in model retrieval by means of hashing technique instead of using the binary~tree method. In this paper, we treat an object boundary as a string of structural units and use an attributed string matching algorithm to compute similarity measure between two strings. We select from the privileged strings a privileged string wIth mmimal eccentricity. This privileged string is treated as the reference string. And thell we wllstructed hash table using the distance between privileged string and the reference string as a key value. Once the database of all model strings is built, the recognition proceeds by segmenting the scene into a polygonal approximation. The distance between privileged string extracted from the scene and the reference string is used for model hypothesis rerieval from the table. As a result of the computer simulation, the proposed method can recognize objects only computing, the distance 2-3tiems, while previous method should compute the distance 8-10 times for model retrieval.

  • PDF

An Efficient Data Structure for Queuing Jobs in Dynamic Priority Scheduling under the Stack Resource Policy (Stack Resource Policy를 사용하는 동적 우선순위 스케줄링에서 작업 큐잉을 위한 효율적인 자료구조)

  • Han Sang-Chul;Park Moon-Ju;Cho Yoo-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.6
    • /
    • pp.337-343
    • /
    • 2006
  • The Stack Resource Policy (SRP) is a real-time synchronization protocol with some distinct properties. One of such properties is early blocking; the execution of a job is delayed instead of being blocked when requesting shared resources. If SRP is used with dynamic priority scheduling such as Earliest Deadline First (EDF), the early blocking requires that a scheduler should select the highest-priority job among the jobs that will not be blocked, incurring runtime overhead. In this paper, we analyze the runtime overhead of EDF scheduling when SRP is used. We find out that the overhead of job search using the conventional implementations of ready queue and job search algorithms becomes serious as the number of jobs increases. To solve this problem, we propose an alternative data structure for the ready queue and an efficient job-search algorithm with O([log$_2n$]) time complexity.

Server Replication Degree Reducing Location Management Cost in Cellular Networks (셀룰라 네트워크에서 위치 정보 관리 비용을 최소화하는 서버의 중복도)

  • Kim, Jai-Hoon;Lim, Sung-Hwa
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.265-275
    • /
    • 2002
  • A default server strategy is a very popular scheme for managing location and state information of mobile hosts in cellular networks. But the communication cost increases if the call requests are frequent and the distant between the default server and the client is long. Still more any connection to a mobile host cannot be established when the default server of the destination mobile host fails. These problems can be solved by replicating default server and by letting nearest replicated default server process the query request which is sent from a client. It is important to allocate replicated default servers efficiently in networks and determine the number of replicated default servers. In this paper, we suggest and evaluate a default server replication strategy to reduce communication costs and to improve service availabilities. Furthermore we propose and evaluate an optimized allocation algorithm and an optimal replication degree for replicating: dofault servers in nn grid networks and binary tree networks.