• Title/Summary/Keyword: Binary Exponential Back-off(BEB)

Search Result 6, Processing Time 0.025 seconds

A Deterministic Back-off Algorithm for Wireless Networks

  • Jin Jung-woo;Kim Kyung-Jun;Kim Dong-hwan;Lee Ho-seung;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.310-312
    • /
    • 2004
  • Binary Exponential Back-off (BEB) scheme is widely adopted in both wire and wireless networks for collision resolution. The BEB suffers from several performance drawbacks including long packet delay and low utilization since it doubles the back-off size after each collision. In addition, operation of the BEB algorithm may lead to the last-come-first-serve result among competing users and the BEB is further unstable for every arrival rate greater than 0 due to its random access property[1,2]. In this paper, we propose a deterministic back-off algorithm to reduce contention interval as much as possible for accessing the channel without collision in the back-off process. Simulation results show that our scheme offers a higher throughput as well as a lower packet transfer delay than the BEB by taking advantage of its lower collision ratio in saturation state.

  • PDF

Modified Back-Off Algorithm to Improve Fairness for Slotted ALOHA Sensor Networks (슬롯화된 ALOHA 센서 네트워크에서 공평성 향상을 위한 변형된 백오프 알고리즘)

  • Lee, Jong-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.581-588
    • /
    • 2019
  • In this paper, I propose an modified back-off algorithm to improve the fairness for slotted ALOHA sensor networks. In hierarchical networks, the performance degradation of a specific node can cause degradation of the overall network performance in case the data transmitted by lower nodes is needed to be synthesized and processed by an upper node. Therefore it is important to ensure the fairness of transmission performance to all nodes. The proposed scheme choose a back-off time of a node considering the previous transmission results as well as the current transmission result. Moreover a node that failed to transmit consecutively is given gradually shorter back-off time but a node that is success to transmit consecutively is given gradually longer back-off time. Through simulations, I compare and analyze the performance of the proposed scheme with the binary exponential back-off algorithm(BEB). The results show that the proposed scheme reduces the throughput slightly compared to BEB but improves the fairness significantly.

A CSMA/CA with Binary Exponential Back-off based Priority MAC Protocol in Tactical Wireless Networks (전술 무선망에서 2진 지수 백오프를 사용하는 CSMA/CA 기반 우선순위 적용 MAC 프로토콜 설계)

  • Byun, Ae-Ran;Son, Woong;Jang, Youn-Seon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.12-19
    • /
    • 2015
  • In network-centric warfare, the communication network has played a significant role in defeating an enemy. Especially, the urgent and important data should be preferentially delivered in time. Thus, we proposed a priority MAC protocol based on CSMA/CA with Binary Exponential Back-off for tactical wireless networks. This MAC protocol suggested a PCW(Prioritized Contention Window) with differentiated back-off time by priority and a RBR(Repetitive Back-off Reset) to reset the remaining back-off time. The results showed that this proposed MAC has higher performance than those of DCF(Distributed Coordination Function) in the transmission success rate and the number of control packet transmission by reducing the packet collision. Thus, it produced more effective power consumption. In comparison with DCF, this proposed protocol is more suitable in high-traffic network.

MDA-SMAC: An Energy-Efficient Improved SMAC Protocol for Wireless Sensor Networks

  • Xu, Donghong;Wang, Ke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4754-4773
    • /
    • 2018
  • In sensor medium access control (SMAC) protocol, sensor nodes can only access the channel in the scheduling and listening period. However, this fixed working method may generate data latency and high conflict. To solve those problems, scheduling duty in the original SMAC protocol is divided into multiple small scheduling duties (micro duty MD). By applying different micro-dispersed contention channel, sensor nodes can reduce the collision probability of the data and thereby save energy. Based on the given micro-duty, this paper presents an adaptive duty cycle (DC) and back-off algorithm, aiming at detecting the fixed duty cycle in SMAC protocol. According to the given buffer queue length, sensor nodes dynamically change the duty cycle. In the context of low duty cycle and low flow, fair binary exponential back-off (F-BEB) algorithm is applied to reduce data latency. In the context of high duty cycle and high flow, capture avoidance binary exponential back-off (CA-BEB) algorithm is used to further reduce the conflict probability for saving energy consumption. Based on the above two contexts, we propose an improved SMAC protocol, micro duty adaptive SMAC protocol (MDA-SMAC). Comparing the performance between MDA-SMAC protocol and SMAC protocol on the NS-2 simulation platform, the results show that, MDA-SMAC protocol performs better in terms of energy consumption, latency and effective throughput than SMAC protocol, especially in the condition of more crowded network traffic and more sensor nodes.

Design of an Effecient Local Area Computer Communication Network Controller for Office Automation (Contention Resolution Algorithm Based on CSMA/CD) (사무자동화를 위한 근거리 컴퓨터 통신망 콘트롤러 개발에 관한 연구)

  • 이명수;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.2
    • /
    • pp.137-145
    • /
    • 1986
  • The contention resolution algorithm with the limited packet delay time as well stable distribution as the packet delay time is proposed and implementes for improving the mean packet delay time in the network employing CSMA/CD as the access method. The implementation of node controller is based on IEEE 802.2 standard logical link control(LLC) and IEEE 802.3 standard medium access control(MAC). Some portion of IEEE 802.3 Standard MAC, and the Binary Exponential Back-off(BEB) algorithm is replaced by the proposed algorithm. From the view of normalized mean packet transmission delay time, the controller implemented here can be applicable to the office-automation system, and the factory-and laboratory-automation environment where the limited time criterion is very significant.

  • PDF

Performance Analysis of the IEEE 802.16 Broadband Wireless Access systems

  • Cho Dong-hoon;Kim Hyun-Sook;Kim Jin-nyun;Ha Nam-koo;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.176-180
    • /
    • 2004
  • In this paper we introduce a bandwidth allocation algorithm and admission control policy for IEEE 802.16 broadband wireless access standard. The proposed mechanism is practical and compatible to the IEEE 802.16. Our scheme provides QoS support to high priority traffic and high throughput in low priority traffic. The simulation show that the proposed scheme includes QoS support for real-time traffic and we presented that BS determine a efficient contention mini-slot size. We have shown the relationship between traffic size and its QoS requirements and the network performance.

  • PDF