Gwark, Ji-Yong;Gahlot, Nitesh;Kam, Mincheol;Park, Hyung Bin
Clinics in Shoulder and Elbow
/
v.21
no.2
/
pp.82-86
/
2018
Background: Although a common shoulder disease, there are no accepted classification criteria for frozen shoulder (FS). This study therefore aimed to evaluate the accuracy of the conventionally used FS classification system. Methods: Primary FS patients (n=168) who visited our clinic from January 2010 to July 2015 were included in the study. After confirming restrictions of the glenohumeral joint motion and absence of history of systemic disease, trauma, shoulder surgery, shoulder muscle weakness, or specific x-ray abnormalities, the Zuckerman and Rokito's classification was employed for diagnosing primary FS. Following clinical diagnosis, each patient underwent a shoulder magnetic resonance imaging (MRI) and blood tests (lipid profile, glucose, hemoglobin A1c, and thyroid function). Based on the results of the blood tests and MRIs, the patients were reclassified, using the criteria proposed by Zuckerman and Rokito. Results: New diagnoses were ascertained including blood test results (16 patients with diabetes, 43 with thyroid abnormalities, and 149 with dyslipidemia), and MRI revealed intra-articular lesions in 81 patients (48.2%). After re-categorization based on the above findings, only 5 patients (3.0%) were classified having primary FS. The remaining 163 patients (97.0%) had either undiagnosed systemic or intrinsic abnormalities (89 patients), whereas 74 patients had both. Conclusions: These findings demonstrate that most patients clinically diagnosed with primary FS had undiagnosed systemic abnormalities and/or intra-articular pathologies. Therefore, a modification of the Zuckerman and Rokito's classification system for FS may be required to include the frequent combinations, rather than having a separate representation of systemic abnormalities and intrinsic causes.
Lee Eui-Ju;Song Kwang-Bin;Choi Hwan-Soo;Yoo Jung-Hee;Kwak Chang-Kyu;Sohn Eun-Hae;Koh Byung-Hee
The Journal of Korean Medicine
/
v.26
no.1
s.61
/
pp.93-102
/
2005
Objective : This research was conducted to evaluate the method of sasangin classification by voice analysis, The 2 pilot tests were thus designed to solve the following problems: 'What are the conditions at classification for sasangin by the voice analysis?' and 'What are the important variances of /a/ parameter?'. Methods: 122 volunteers Were examined to make a diagnosis of sasangin by QSCC II and they were disease-free and healthy, First, they said /a/ three times for 2 seconds in their usual voice, Second, they said /a/ for 2 seconds by the different ways of high tone, mid tone, and low tone. The sounds were collected by a recording program (cooledit 2000) through a Sony microphone (ecm-26l). We analyzed the voices by maltlab, the simulation tool. Results: There were no differences and were correlations when one said /a/ three times for 2 seconds in the usual voice. There were some things to correlate when one said /a/ three times for 2 seconds by the different ways of high speech, usual speech, and low speech. Others were nothing to correlate. We evaluated the value of sasangin classification method by only /a/ voice analysis. The hit ratio was average $66.3\%\;:\;soyangin\;67.9\%,\;taeumin\;68.0\%,\;soeumin\;63.9\%$. Conclusion: We must set up the conditions to use the method of sasangin classification by voice analysis. The value of sasangin classification method by only fa! voice analysis was a hit ratio of $66.3\%$.
Purpose: The aim of this study was to evaluate and compare the accuracy performance of dental professionals in the classification of different types of dental implant systems (DISs) using panoramic radiographic images with and without the assistance of a deep learning (DL) algorithm. Methods: Using a self-reported questionnaire, the classification accuracy of dental professionals (including 5 board-certified periodontists, 8 periodontology residents, and 31 dentists not specialized in implantology working at 3 dental hospitals) with and without the assistance of an automated DL algorithm were determined and compared. The accuracy, sensitivity, specificity, confusion matrix, receiver operating characteristic (ROC) curves, and area under the ROC curves were calculated to evaluate the classification performance of the DL algorithm and dental professionals. Results: Using the DL algorithm led to a statistically significant improvement in the average classification accuracy of DISs (mean accuracy: 78.88%) compared to that without the assistance of the DL algorithm (mean accuracy: 63.13%, P<0.05). In particular, when assisted by the DL algorithm, board-certified periodontists (mean accuracy: 88.56%) showed higher average accuracy than did the DL algorithm, and dentists not specialized in implantology (mean accuracy: 77.83%) showed the largest improvement, reaching an average accuracy similar to that of the algorithm (mean accuracy: 80.56%). Conclusions: The automated DL algorithm classified DISs with accuracy and performance comparable to those of board-certified periodontists, and it may be useful for dental professionals for the classification of various types of DISs encountered in clinical practice.
IEMEK Journal of Embedded Systems and Applications
/
v.12
no.5
/
pp.277-286
/
2017
This paper introduces mathematical modelling and control algorithm of expendable mine disposal vehicle. This vehicle has two longitudinal thrusters, one vertical thruster and internal mass moving system which can control pitch rate. Also, the vehicle has an optical camera and forward looking sonar for underwater mine detection and classification. The vehicle is controlled via an optical cable connected with operating console on the mother ship. We describe the vehicle's 6DOF dynamic model and controller which can track the desired trajectory for the way-point tracking. These simulation results shows guidance and maneuvering performance which has other sensor data or not.
기계 학습(machine-learning) 분야의 분류 알고리즘(classification algorithms)은 의료 진단, 유전자 정보 해석, 스팸 탐지, 얼굴 인식 및 신용 평가와 같은 다양한 응용 서비스에서 사용되고 있다. 이와 같은 응용 서비스에서의 분류 알고리즘은 사용자의 민감한 정보를 포함하는 데이터를 이용하여 학습을 수행하는 경우가 많으며, 분류 결과도 사용자의 프라이버시와 연관된 경우가 많다. 따라서 학습에 필요한 데이터의 소유자, 응용 서비스 사용자, 그리고 서비스 제공자가 서로 다른 보안 도메인에 존재할 경우, 프라이버시 보호 문제가 발생할 수 있다. 본 논문에서는 이러한 문제를 해결하면서도 분류 서비스를 제공할 수 있도록 도와주는 프라이버시 보존 분류 프로토콜(privacy-preserving classification protocol: PPCP) 에 대해 소개한다. 구체적으로 PPCP의 프라이버시 보호 요구사항을 분석하고, 기존의 연구들이 프라이버시 보호를 위해 사용하는 암호학적 기본 도구(cryptographic primitive)들에 대해 소개한다. 최종적으로 그러한 암호학적 기본 도구를 사용하여 설계된 프라이버시 보존 분류 프로토콜에 대한 기존 연구들을 소개하고 분석한다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.65-66
/
2021
본 논문에서는 Smart Factory의 자동 공정에서 결함의 분류를 실시간으로 시도하여 자동 공정 제어를 위한 결함 분류 딥러닝 기법을 제안하고, Pooling 종류에 따른 분류 성능을 비교한다. Smart Factory 구축에 있어서 CNN을 이용한 공정 제어를 통해 제품 생산에 있어서 생산량의 증가와 불량률의 감소를 이루어내는 것이 가능하다. Smart Factory는 자동화 공정이므로 결함의 분류 속도가 중요하지만, 생산량의 증가와 불량률의 감소를 위해서는 정확하게 결함의 종류를 분류하여 Smart Factory의 공정을 제어하는 것이 더욱 중요하다. 본 논문에서는 Pooling을 Max Pooling과 Averrage Pooling을 복합적으로 설정하였을 때 높은 성능을 보였다.
Ji-Hoon Kim;Su-Bin Lee;Soo-Min Park;Ga-In Seo;Jaisoon Baek;Sung Jin Kim
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.145-146
/
2024
본 논문에서는 최근 몇 년 동안 스마트시티 인프라 투자가 크게 성장하였으며 글로벌 스마트 쓰레기통 시장은 성장 가능성이 높을 것으로 예상된다. 본 논문에서는 이에 발맞추어 CNN과 MQTT를 활용한 스마트 쓰레기통을 제작하였다. 쓰레기의 종류를 구별하고 해당되는 쓰레기통의 뚜껑을 골라 여는 것은 현대인의 생활에서 비효율을 야기한다. 이러한 문제를 해결하고자 CNN을 통한 효율적인 분류와 MQTT를 통한 통신, 센서들을 활용한 더 나은 쓰레기 수거 방식을 제공한다. 스마트 쓰레기통으로 일상을 더욱 편하고 효율적이게 만드는 데 기여하고자 한다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.49
no.3
/
pp.15-26
/
2012
Recently, due to applicability increase of vector data based digital map for geographic information and evolution of geographic measurement techniques, large volumed GIS(geographic information service) services having high resolution and large volumed data are flowing actively. This paper proposed an efficient vector map compression technique using the SEC(spatial energy compaction) based on classified bins for the vector map having 1cm detail and hugh range. We encoded polygon and polyline that are the main objects to express geographic information in the vector map. First, we classified 3 types of bins and allocated the number of bits for each bin using adjacencies among the objects. and then about each classified bin, energy compaction and or pre-defined VLC(variable length coding) were performed according to characteristics of classified bins. Finally, for same target map, while a vector simplification algorithm had about 13%, compression ratio in 1m resolution we confirmed our method having more than 80% encoding efficiencies about original vector map in the 1cm resolution. Also it has not only higher compression ratio but also faster computing speed than present SEC based compression algorithm through experimental results. Moreover, our algorithm presented much more high performances about accuracy and computing power than vector approximation algorithm on same data volume sizes.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.11
/
pp.5594-5615
/
2019
Malicious social robots, which are disseminators of malicious information on social networks, seriously affect information security and network environments. The detection of malicious social robots is a hot topic and a significant concern for researchers. A method based on classification has been widely used for social robot detection. However, this method of classification is limited by an unbalanced data set in which legitimate, negative samples outnumber malicious robots (positive samples), which leads to unsatisfactory detection results. This paper proposes the use of generative adversarial networks (GANs) to extend the unbalanced data sets before training classifiers to improve the detection of social robots. Five popular oversampling algorithms were compared in the experiments, and the effects of imbalance degree and the expansion ratio of the original data on oversampling were studied. The experimental results showed that the proposed method achieved better detection performance compared with other algorithms in terms of the F1 measure. The GAN method also performed well when the imbalance degree was smaller than 15%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.