• Title/Summary/Keyword: Bilobalide

Search Result 16, Processing Time 0.027 seconds

Insecticidal Activities of Bilobalide from Ginkgo biloba Leaves and its Derivatives (은행잎 유래 살충성분 bilobalide와 그 분해물의 살충활성)

  • Yang, Eun-Young;Hong, Su-Myeong;Ahn, Young-Joon;Kwon, Oh-Kyung
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2001
  • This study was conducted to investigate insecticidal activities of Ginkgo biloba (L.) leaves-derived bilobalide and its hydrolysis and oxidation products against adults of Nilaparavata lugens Stal. To find out active insecticidal moiety of bilobalide, decomposed intermediates and derivatives of bilobalide were made by hydrolysis, oxidation, and acetylation. The structures of hydrolysis product by base and oxidation product by acid were identified as cyclopentenone analogues and trilactone sesquiterpene from dehydration of bilobalide, respectively. Insecticidal activities of the decomposed intermediates and the derivatives of bilobalide decreased in the order of bilobalide, monoacetate, ginkgolide C, oxidation product, diacetate, and hydrolysis product. Therefore, trilactone structure of bilobalide may be essential for its insecticidal activity.

  • PDF

Inhibition of cell growth and induction of apoptosis by bilobalide in FaDu human pharyngeal squamous cell carcinoma

  • Jeong, Kyung In;Kim, Su-Gwan;Go, Dae-San;Kim, Do Kyungm
    • International Journal of Oral Biology
    • /
    • v.45 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • Bilobalide isolated from the leaves of Ginkgo biloba has several pharmacological activities such as neuroprotective, anti-inflammatory, and anticonvulsant. However, the effect of bilobalide on cancer has not been clearly established. The main purpose of this study was to investigate the effect of bilobalide on cell growth and apoptosis induction in FaDu human pharyngeal squamous cell carcinoma. This was examined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, nuclear 4′,6-diamidino-2-phenylindole dihydrochloride staining, DNA fragmentation analysis, and immunoblotting. Bilobalide inhibited the growth of FaDu cells in dose- and time-dependent manners. Treatment with bilobalide resulted in nuclear condensation and DNA fragmentation in FaDu cells. Furthermore, it promoted the proteolytic cleavage of procaspase-3/-7/-8/-9 with increase in the amount of cleaved caspase-3/-7/-8/-9. Bilobalide-induced apoptosis in FaDu cells was mediated by the expression of Fas and the activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting revealed that the antiapoptotic mitochondrial protein Bcl-2 was downregulated, but the proapoptotic protein Bax was upregulated by bilobalide in FaDu cells. Bilobalide significantly increased Bax/Bcl-2 ratio. These results suggest that bilobalide inhibits cell proliferation and induces apoptosis in FaDu human pharyngeal squamous cell carcinoma via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondrial-mediated intrinsic apoptotic pathway.

Variation of Ginkgolides and Bilobalide Contents in Leaves and Cell Cultures of Ginkgo biloba L.

  • Park, Young-Goo;Kim, Su-Jung;Jung, Hee-Young;Kang, Young-Min;Kang, Seung-Mi;D. Theertha Prasad;Kim, Sun-Won;Park, Myung-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • Ginkgolides (GK) and bilobalide are valuable compounds that belong to the lactone terpene. The contents of these metabolites were determined by HPLC from female and male tree of Ginkgo biloba L. The productivity of G. biloba cells was also compared with the corresponding individual trees. High variations in the ginkgolides and bilobalide were observed from different individuals, plant parts, and cultured cells. The ginkgolides and bilobalide contents were different depending on the plant parts. Callus was obtained from various plant tissues, and NAA was better at callogenesis than 2,4-D in both the female and male trees. The plants and their corresponding cells showed considerable variation in their ginkgolides and bilobalide concentrations. The ginkgolides and bilobalide contents were not correlated with the production between dominant trees and their corresponding cells. Light irradiation enhanced the production of GK-A and GK-B, however, the concentration of bilobalide decreased under dark conditions.

Bilobalide Attenuates Glutamate-Induced Neurotoxicity in Primary Cultures of Rat Cortical Cells (빌로바라이드가 글루타메이트에 의한 신경독성에 미치는 영향)

  • Kim, So-Ra;Jang, Young-Pyo;Sung, Sang-Hyun;Lee, Heum-Sook;Moon, A-Ree;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.111-116
    • /
    • 1997
  • The neurotoxicity induced by L-glutamate in primary cultures of rat cortical cells could be attenuated by sesquiterpene constituent of Ginkgo biloba leaves, bilobalide. At the c oncentration of 100 nM, Bilobalide elevated the combined levels of reduced/oxidized glutathione in rat cortical cells exposed to 100 ${\mu}$M glutamate. Furthermore, bilobalide promoted a reduction in superoxide dismutase activity in glutamate-treated cells. Finally, bilobalide markedly inhibited the production of malondialdehyde. a measure of lipid peroxidation, in glutamate-treated rat cortical cells.

  • PDF

Production of Ginkgolides and Bilobalide from Optimized the Ginkgo biloba Cell Culture

  • Park, Young-Goo;Kim, Su-Jung;Kang, Young-Min;Jung, Hee-Young;D. Theertha Prasad;Kim, Sun-Won;Chung, Young-Gwan;Park, Myung-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • The influence of various culture conditions on growth and ginkgolides (GKA and GKB), and bilobalide formation in callus and suspension cultures of Ginkgo biloba were investigated. Callus induced from the leaf petioles exhibited distinct morphological and physiological responses. The cell biomass and ginkgolides content varied among the cell lines; brownish callus lines produced high levels of ginkgolides and bilobalide in spite of poor cell growth. Among the culture media used, MS medium showed significant effect on cell growth and ginkgolides production. Low concentration of sucrose (3%) improved cell growth, while higher sucrose levels (5 and 7%) improved ginkgolides production. Cultivation of callus cultures above 28$^{\circ}C$ dramatically reduced their growth rate; however the cell lines grown at 36$^{\circ}C$ showed increased levels of bilobalide content. A 2.5-L balloon type bubble bioreactor (BTBB) was successfully developed for the cell growth and ginkgolides production.

Antifungal Effect of Bilobalide and Ginkgolide Extracted from Leaves of Ginkgo biloba Against Pityrosporum ovale (비듬유발균 (Pityrosporum ovale) 에 대한 은행잎으로부터 추출한 Ginkgolide 및 Bilobalide의 항진균 효과)

  • Lee, In-Hwa;Kim, Mi-Jin;Choi, Jun-Ho;Kim, Chi-Hyun;Choi, Seung-Hyun
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Antifungal effect of Ginkgo biloba leaves extracts conducted for Pityrosporum ovale. Antifungal effect verified by diffusion test, optical density test and colony counting test under various concentration. Extract of ginkgo biloba leaves performed with 40% ethanol and 60% water solution at $60^{\circ}C$ and major components analyzed by HPLC. The concentrated extract have bilobalide and ginkgolide A and ginkgolide B and their concentration were 153.0 mg/L, 8403.5 mg/L and 2723.0 mg/L respectively. Ginkgo biloba leaves extracts gave 99.1% of antifungal effect for Pityrosporum ovale examined by colony counting method.

Repellent and Pesticidal Effect of Ginkgo biloba Leaves Extracts on the Tetranichus urticae, Aphis gossypii and Myzus persicae (점박이응애(Tetranichus urticae), 목화진딧물(Aphis gossypii)과 복숭아혹진딧물(Myzus persicae)에 대한 은행잎 추출물의 살충 및 기피효과)

  • Lee, In-Hwa;Seol, Myung-Su;Park, Jong-Dae
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.150-154
    • /
    • 2005
  • To overcome the problems associated with chemical pesticides, biological pest controls agent extracted from Ginkgo biloba was studied. Insecticidal activities components in Ginkgo biloba extracts were analyzed using high performance liquid chromatography (HPLC). This results of HPLC analysis, GG-W80 were included bilobalide $611\;{\mu}g/kg$, ginkgolide A $37\;{\mu}g/kg$ and ginkgolide B $243\;{\mu}g/kg$, while YG-W80 were included bilobalide $214\;{\mu}g/kg$ and ginkgolide B $46\;{\mu}g/kg$. The biological activity of Ginkgo biloba extracts were conducted to repellent and pesticidial effect of Tetranichus urticae, Aphis gossypii and Myzus persicae treated with Ginkgo biloba leaves extracts. Mortalities of adult T. urticae to green Ginkgo biloba extracts (GG-W80) and yellow Ginkgo biloba extracts (YG-W80) were shown 98.3% and 20.0%, respectively. From these results, terpenes components in Ginkgo biloba extracts could be use for biological controls for T. urticae.

The Effects of bilobalide Extracted from Ginkgonis Folium on Inflammation (은행잎의 주성분인 bilobalide가 염증반응에 미치는 효과)

  • Jung, Je-Ryong;Kil, Ki-Jung
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.85-93
    • /
    • 2015
  • Objectives : Bilobalide (BIL) is a predominant sesquiterpene trilactone constituent that accounts for a partial portion of the standardized Ginkgonis Folium extract, which has been widely used to treat a variety of neurological disorders involving cerebral ischemia and neurodegeneration. In this study, it was tested whether BIL exhibits anti-inflammatory activities on inflammation response, or not. Methods : To elucidate the molecular mechanisms of BIL on pharmacological and biochemical actions in inflammation, we examined the effect of BIL on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages. The investigation was focused on how BIL affect on inflammation-related mediators including various signals such as nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible NO synthase(iNOS), cyclooxygenase-2(COX-2), interleukin-6(IL-6), tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), mitogen-activated protein kinases(MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) in LPS-stimulated RAW 264.7 cells. Results : We found that BIL inhibited LPS-induced NO, $PGE_2$, IL-6 and $TNF-{\alpha}$ productions as well as the expressions of iNOS and COX-2. Furthermore, BIL suppressed the LPS-induced phosphorylation for MAPK activation. Conclusions : These results suggest that BIL has inhibitory effects on LPS-induced $PGE_2$, NO, IL-6 and $TNF-{\alpha}$ production, as well as the expressions of iNOS and COX-2 in the murine macrophage. It seems that these inhibitory effects occur by blocking the phosphorylation of MAPKs for activation. Then, BIL suppressed the activation of nuclear factor $NF-{\kappa}B$ in nucleus. These observations suggest that BIL has anti-inflammatory effect by inhibiting.

Interaction of Bilobalide and Ginkgolides B with Bovine Serum Albumin: A Fluorescence Quenching Study

  • Chen, Yan;Wang, Ruijun;Wang, Shusheng;Yang, Yi;Li, Shaofei;Kai, Guiqing
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3261-3266
    • /
    • 2011
  • The interaction of bilobalide (BB) and ginkgolides B (GB) with bovine serum albumin (BSA) was investigated by fluorescent technique and UV/vis absorption spectroscopy. The results showed that BB and GB could intensively quench the fluorescence of BSA through a static quenching procedure. The binding constants (Ka) and the average binding distance between the donor (BSA) and the acceptor (ginkgolides) were obtained ($r_{BB}$ = 5.33 nm and $r_{GB}$ = 4.20 nm) by the theory of non-radiation energy transfer, and then the thermodynamic parameters such as ${\Delta}S^0$ (0.17-0.32 kJ/mol), ${\Delta}G^0$ (-20.76 ~ -17.79 kJ/mol) and ${\Delta}H^0$ (32.47-76.52 kJ/mol) could be calculated, respectively. All these results revealed that the interaction of BB and GB with BSA were driven mainly by hydrophobie force. The synchronous fluorescence spectroscopy was applied to examine the effect of two ginkgolides on the configuration of BSA. The configuration alteration of BSA could be induced by the hydrophobicitv environment of tyrosine with the increase of the drug concentration.

A Study on the Antimicrobial Effect of Ginkgo biloba Leaves Extracts according to Concentrations of Ethanol for staphylococcus aureus (포도상구균에 대만 에탄올 농도별 은행잎 추출물의 항균효과에 관한 연구)

  • Lee, In-Hwa;Shim, Youn;Choi, Seung-Hyun;Park, Ju-Young;Han, Sung-Woo;Song, Jn-Young;Yoon, Suk-Jin
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.312-316
    • /
    • 2006
  • A optimal condition for the Ginkgo biloba extraction in ethanol and water binary solvent system has been proposed based on concentration of bilobalide and ginkgolide known as having a antimicrobial components in the range 5% to 70% ethanol in water at $80^{\circ}C$. Concentration of bilobalide as a single component of Ginkgo biloba leaves extract is the highest at the 60% ethanol and ginkgolide A and B is highest at 50% ethanol. Antimicrobial effect of Ginkgo biloba leaves extracts on the S. aureus was also examined by disc diffusion test and optical density test. In case of the disc diffusion test, the clean zone diameter was increased from 0.95 cm to 1.70 cm as ethanol concentration increased from 5 to 70%. However, over the 40% of ethanol concentration the antimicrobial effect was almost flat. Based on these results, we propose that the 40% of ethanol and 60% water solvent is most desirable for Ginkgo biloba extract considering vapor pressure problem in concentrating process after extraction. We introduced SEM and TEM to figure out the morphological change on the surface and inside body of S. aureus when Ginkgo biloba leaves extract was treated. After mixed with Ginkgo biloba leaves extract blast like blebs appeared on the surface of S. aureus cells and cell wall was not observed. From the these results, it seems that the Ginkgo biloba leaves extract including bilobalide and ginkgolide A, B prevent cell wall synthesis.