• Title/Summary/Keyword: Billfishes

Search Result 5, Processing Time 0.02 seconds

Spatial Variations in the Catch of Billfishes in the Pacific Ocean and Factors Affecting Annual Changes in the Catch (태평양 새치류의 어장분포와 어획량 경년 변동에 영향을 미치는 요인)

  • Yoo, Joon-Taek;Hwang, Seon-Jae;An, Doo-Hae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.695-702
    • /
    • 2009
  • This study includes spatial variations in the catch of billfishes in the Pacific Ocean and examines factors affecting interannual changes in the catch. Main billfish species caught by Korean tuna longline fishery were blue marlin and swordfish. A main fishing ground of the species was the tropical Pacific Ocean, while additional fishing ground of billfishes tended to be formed in the Pacific coast of Mexico in the El Nino periods. Further, the catch of billfishes was significantly related to CPUE (tons/average of the used hooks/vessel) in the entire Pacific Ocean as an index of stock abundance and equatorial SOI (EQSOI) as an index of El Nino event. Annual changes in the catch of billfishes in the Pacific Ocean could be regulated mainly by variations of stock abundance. In addition, increase of the density of billfishes in the tropical Pacific and additional formation of fishing ground by El Nino event possibly contribute to increase of the catch of billfishes in the Pacific Ocean. On the other hand, linear regression model may be more adequate in the analysis of relationships between fisheries data and indices made from using some environmental factors.

An ecological risk assessment for the effect of the Korean tuna longline fishery in the Western and Central Pacific Ocean (중서부 태평양해역의 한국 다랑어 연승어업 영향에 대한 생태학적 위험도 평가)

  • Kwon, You-Jung;An, Doo-Hae;Moon, Dae-Yeon;Hwang, Seon-Jae;Lee, Jae-Bong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.1
    • /
    • pp.22-33
    • /
    • 2009
  • Ecological risk assessment(ERA), developed in Australia, can be used to estimate the risk of target, bycatch and protected species from the effects of fishing using limited data for stock assessment. In this study, we employed the ERA approach to estimate risks to tunas, billfishes, sharks, sea turtles and other species by the Korean tuna longline fishery in the Western and Central Pacific Ocean using productivity and susceptibility analyses of the ERA based on low(<1.30), medium(1.30-1.84) and high risk(>1.84). Albacore, bigeye, yellowfin, skipjack and bluefin tunas were generally evaluated in the medium risk. The susceptibility of tuna species, however, had higher risks than the productivity. Billfishes were also at medium risk, while sharks were at high risk by the tuna longline fishery. The risk of productivity was generally high, because most sharks caught by the tuna longline fishery have high longevities, i.e., over 10 years, including ovoviviparous species. Susceptibility, which is related with the selection of fishing gear, was also high, because the longline fishery has no gear modifications to prevent bycatch of protected species. Not only target tuna species were influenced by the tuna longline fishery in the Western and Central Pacific Ocean, but also nontarget species, such as pomfret, mackerels rays, sea turtle were done. Ecosystem-based fishery assessment tools, such as productivity and susceptibility analysis(PSA), have the ability to provide broad scientific advice to the policy makers and stakeholders.

Fishing efficiency of Korean regular and deep longline gears and vertical distribution of tunas in the Indian Ocean (인도양에서의 한국재래식 및 심층연승의 어획효과와 다랑어류의 연직분포)

  • GONG Yeong;LEE Jang-Uk;KIM Yeong-Seung;YANG Won-Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.2
    • /
    • pp.86-94
    • /
    • 1989
  • Yellowfin and bigeye tunas have been targeting and the most important species for the Korean tuna longline fishery in the Indian Ocean. This study is aimed to analyse the fishing efficiency of the regular and the deep longlines and the vortical distribution of tunas, and the weight composition by fishing depth based on the data from Korean tuna longline fishery from 1973 to 1980 and from 1984 to 1986 in the Indian Ocean. It was found that the deep longline gear on bigeye tuna was significantly different from the regular longline gear on yellowfin tuna in the whole Indian Ocean. Yellowfin tuna and billfishes were chiefly distributed at the shallow layer and bigeye at the deep layer. The weight composition of yellowfin and bigeye tunas by depth showed that the deeper the depth, the larger the bigeye distributed.

  • PDF

Comparison of circle hook and J hook catch rate for target and bycatch species taken in the Korean tuna longline fishery

  • Kim, Soon-Song;Moon, Dae-Yeon;Boggs, Christofer;Koh, Jeong-Rack;An, Doo-Hae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.4
    • /
    • pp.210-216
    • /
    • 2006
  • The circle hook experiments were conducted to compare the catch rates of target and bycatch species between J hook and circle hooks in the tuna longline fishery of the eastern Pacific Ocean between $1^{\circ}48'S-7^{\circ}00'S\;and\;142^{\circ}00'-149^{\circ}13'W$ from July 15 to August 12, 2005. In the target species group no significant differences among 3 types hook, between size 4.0 traditional tuna hooks(J-4) and size 15 circle hooks(C15), and between C15 and size 18 circle hooks(C18) were revealed, but significant differences were found between J-4 and C18. In the bycatch species group significant differences were found among 3 types hook, between J 4 and C15, and between J-4 and C18, but no significant differences were revealed between C15 and C18. Large circle hook(C18) had the lowest catch rate for tunas and for other fishes, and the small circle hook(C15) had lowest rate for billfishes and sharks. The length distributions for bigeye tuna are very similar for the 3 hook types. There were very slight differences in length size between hook types in the bycatch species.

Development of Detection Method for Oilfish (Ruvettus pretiosus and Lepidocybirium flavobrunneum) as a Food Materials not Usable in Foods (식품원료로 사용금지 대상인 기름치 (기름갈치꼬치 및 흑갈치꼬치) 판별법 개발)

  • Park, Yong-Chjun;Kim, Mi-Ra;Jung, Yong-Hyun;Shin, Joon-Ho;Kim, Kyu-Heon;Lee, Jae-Hwang;Cho, Tae-Yong;Lee, Hwa-Jung;Lee, Sang-Jae;Han, Sang-Bae
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • Since 1 June 2012, it is prohibited to sell oilfish as a food material but there are still many illegal cases of selling oilfish as if it is tuna or grilled Patagonian toothfish. So it is absolutely crucial to construct the system to distinguish the real food material from oilfish. There are two sorts of oil fish called Ruvettus pretiosus and Lepidocybirium flavobrunneum involved in Percifomes order and Gempylidae class. 16S DNA gene region in mitochondria was selected to design the specific primers. For design species-specific primer, the theoretical experiment were performed for the sequences of R. pretiosus, L. flavobrunneum, Thunnus thynnus, Thunnus albacores, Makaira mitsukurii and Xiphias gladius, registered at the Gene bank from the National Centre for Biotechnology Information, using BioEdit 7.0.9.0. program. Through the analysis of the result from experiments, it was possible to design the 4 kinds of primers to distinguish R. pretiosus and L. flavobrunneum. As a comparison group, 3 kinds of tuna and 4 kinds of billfishes were selected and experimental verification was performed. As a result, for R. pretiosus and L. flavobrunneum, R.P-16S-006-F/R.P-16S-008-R and L.F-16S-004-F/L.F-16S-006-R primers were selected eventually and PCR condition was established. In addition, 178bp and 238bp of PCR products were confirmed from the established condition and non-specific band was not amplified among similar species. Therefore, the species-specific primers developed in this study would be very useful and used in various ways such as internet shopping mall and illegal distributions with fast and scientific results.