• 제목/요약/키워드: Billet shape

검색결과 107건 처리시간 0.02초

A356 Al 합금의 In-Ladle Direct Thermal Control Rheocasting (In-Ladle Direct Thermal Control Rheocasting of A356 Al alloy)

  • 이진규;김영직;김세광;조형호
    • 한국주조공학회지
    • /
    • 제25권6호
    • /
    • pp.254-258
    • /
    • 2005
  • Semisolid process is possible in any material system possessing a freezing range where the microstructure should consist of the nondendritic globular solid phase separated and enclosed by the liquid phase, referred to as semisolid slurry. There are two primary semisolid processing routes, thixocasting and rheocasting. Especially, rheocasting process has become a new focus in the field of semisolid process because of its many advantages such as no special billet required and possibility of in-house scrap recycling, compared with the thixocasting process. In-Ladle direct thermal control (DTC) rheocasting has been developed, based on the fact that there is slurry and mush transition in every molten metal and the transition, which normally occurs in the range of liquid traction of 0.1 to 0.6, could be controlled by controlling solid shape and relative solid-liquid interfacial energy. In this study, A356 Al alloy was investigated to verify In-Ladle DTC rheocasting for obtaining semisolid slurry. Modeling of heat transfer was carried out to investigate the effect of pouring temperature and ladle material, geometry and temperature and the simulation results were compared with the actual experiments.

위상최적설계를 활용한 압출기의 플라텐 경량화 설계 (Platen Weight Reduction Design of Extruder Using Topology Optimization Design)

  • 김동율;김지욱;이정인;조아라;이성윤;정명식;고대철;장진석
    • 소성∙가공
    • /
    • 제31권5호
    • /
    • pp.302-308
    • /
    • 2022
  • In this study, the weight of the platen was reduced using the structural strength analysis and topology optimization design of the extruder by finite element analysis. The main components of the extruder such as the stem and billet, were modeled, and the maximum stress and safety factor were verified through structural strength analysis. Based on the results of the structural strength analysis, the optimal phase that satisfies the limitation given to the design area of the structure and maximizes or minimizes the objective function was obtained through a numerical method. The platen was redesigned with a phase-optimal shape, the weight was reduced by 40% (from the initial weight of 11.1 tons to 6.6 tons), and the maximum stress was 147.49 MPa safety factor of 1.86.

전.후방 압출품의 냉간단조 공정설계 (Process Design in Cold Forging of the Backward and Forward Extruded Part)

  • 민규식;최종웅;최재찬;김병민;조해용
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.57-64
    • /
    • 1997
  • The process design of backward and forward extrusion of axisymmetric part has been studied in this paper. The important factors of cold forging process with complex geometry are the design of initial billet shape, the possibility of forming by one-stage operation and the determination of preform shapes, etc. Based on the systematic procedure of process sequence design, the forming operation of cold forged part is analyzed by the commercial finite element program, DEFORM. The design criteria are forming load, geo- metrical filling without defect and a sound distribution of effective strain in final product. It is noted that one step of preform operation is required to obtain the final product. Numerical result is compared with experi- mental one. It is found that the analyzed result is in good agreement with actual forming result.

  • PDF

고함량의 Mg을 함유한 Al-Mg 합금의 이축교번단조 변형에 따른 미세조직 및 인장특성 변화 (Microstructure Evolution and Tensile Properties of Al-Mg Alloy Containing a High Content of Mg by Biaxial Alternative Forging)

  • 신영철;하성호;윤영옥;김세광;최호준;현경환;현승균
    • 소성∙가공
    • /
    • 제28권6호
    • /
    • pp.361-367
    • /
    • 2019
  • Microstructure evolution and tensile properties of Al-8mass%Mg alloy casting billet by biaxial alternative forging were investigated in this study. An alternative forging system tailored in this study was used to allow continuous strain accumulations on the alloy workpiece. A finite element (FE) simulation results revealed that the strain was mainly concentrated in the core and that the shear bands developed into a form with an X shape in the cross-section of workpiece after the alternative forging using octangular rod shaped dies. With increasing the forging passes, it was observed that the Al-8mass%Mg alloy workpieces were significantly deformed, and cracks began to form and propagate on the both ends of the forged workpieces after five passes at room temperature. In as-forged microstructures taken by microscopes, twins, clustering of dislocations, and fine subgrains were found. Tensile strengths of the forged specimens showed significant increases depending on the number of forging passes, and a trade-off relationship was observed between the elongation and strength. At room temperature and 100℃ the workpieces showed similar behaviors in microstructural evolution and tensile properties depending on forging passes, while the increase range in strength was reduced at 200℃.

알루미늄합금의 반용융 단조 및 주조공정에 관한 수치해석 (Numerical Analysis on Semi-Solid Forging and Casting Process of Aluminum Alloys)

  • 강충길;임미동
    • 소성∙가공
    • /
    • 제6권3호
    • /
    • pp.239-249
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for filling phenomena in forging process of arbitrarily shaped dies. To produce a automotive part which has good mechanical property, the filling pattern according to die velocity and solid fraction distribution has to be estimated for arbitrarily shaped dies. Therefore, the estimation of filling characteristic in the forging simulation with arbitrarily shaped dies of semi-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for arbitrarily shaped dies is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process with arbitrarily shaped dies is performed to the isothermal conditions of two dimensional problems. To analysis of forging process by using semi-solid materials, a new stress-strain relationship is described, and forging analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for forging force and filling limitations will be compared to experimental data. The filling simulation of simple products performed with the uniform billet temperature(584$^{\circ}C$) from the induction heating by the commercial package MAGMAsoft. The initial step of computation is the touching of semi-solid material with the end of die gate and the initial concept of proposed system just fit with the capability of MAGMAsoft.

  • PDF

자동차 부품용 마그네슘 합금 관재 압출공정조건 분석 (Analysis of Tube Extrusion Process Conditions Using Mg Alloy for Automotive Parts)

  • 박철우;김호윤
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1675-1682
    • /
    • 2012
  • 경량화는 대기오염과 자원고갈의 측면에서 매우 중요하게 인식되고 있어, 많은 자동차용 부품이 Al 및 Mg 합금으로 대체되었으며, 관련 연구가 지속적으로 증가하고 있다. 그러나 Mg 합금은 Al 합금에 비해 높은 재료비와 난성형성으로 인한 낮은 생산성 때문에 제한적으로 적용되고 있다. 본 연구에서는 FEA를 이용하여 자동차 범퍼 백 빔용 관재에 대한 공정조건을 분석하였으며, 생산성을 향상시킬 수 있는 방법을 확립하였다. 물성치 확보를 위해 물성시험을 수행하였으며, 소성변형 중 발생하는 열 관련 물성을 정의하기 위하여 단순형상에 대한 실험과 해석을 수행하였다. 이후 온도조건 및 램 속도를 고려하여 제품에 대한 해석을 수행하였다. 이를 통하여 압출공정조건을 확립하였으며, 표면결함이 없는 제품을 성형하는데 성공하였다.

원형 또는 사각 단면을 가지는 알루미늄 곡관 튜브제품의 열간금속압출굽힘가공 (Hot Metal Extru-Bending Process for Curved Aluminum Tube Products with Circular or Rectangular Sections)

  • 박대윤;진인태
    • 소성∙가공
    • /
    • 제13권8호
    • /
    • pp.663-670
    • /
    • 2004
  • The bending phenomenon has been known to be occurred by the difference of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container. The difference of velocity at the die exit can be controlled by the two variables, the one of them is the different velocity of extrusion punch through the multi-hole container, the other is the difference of hole diameter of muliti-hole container. In this paper the difference of hole diameter is applied. So it can bend during extruding products because of the different amount of two billets when billets would be bonded in the porthole dies cavity. And the bending curvature can be controlled by the size of holes. The experiments with aluminum material for the curved tube product had been done for circular or rectangular curved tube section. The results of the experiments show that the curved tube product can be formed by the extru-bending process without the defects such as distortion of section and thickness change of wall of tube and folding and wrinkling. The curvature of product can be controlled by shape of cross section and the difference of billet diameters. And it is known that the bonding and extruding and bending process can be done simultaneously in the die cavity by the experiments that rectangular hollow curved tubes could be extruded by porthole dies with four different size billets made of aluminum material. And it shows that bending phenomenon can happen during extruding with for different billets from the analysis by DEFORM-3D.