• Title/Summary/Keyword: Biliary

Search Result 694, Processing Time 0.021 seconds

A Comparative Analysis of GBEF According to Image Aquisition Method in Hepatobiliary Scan (간담도스캔의 영상수집방법에 따른 담즙배출율의 비교분석)

  • Kim, Yeong-Seon;Seo, Myeong-Deok;Lee, Wan-Kyu;Song, Jae-Beom
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.8-16
    • /
    • 2014
  • Purpose The quantitative analysis of gallbladder emptying is very important in diagnosis of motility disorder of gallbladder and in biliary physiology. The GBEF obtain the statics aquisition method or the dynamic acquisition method in two ways. The purpose of this study is to compare the GBEF value of statics acquisition method and the dynamic acquisition method. And we find the best way for calculate GBEF. Materials and Methods The quantitative hepatobiliary scan with $^{99m}Tc$-mebrofenin was performed of 27 patients. Initial images were acquired statically, for 60 min after injection of the radioactive tracer. And if the gallbladder is visualized to 60 min, performed stimulation of gallbladder (1egg, 200 mL milk). After that, started acquisition of dynamic image for 30 min. After that, image of after fatty meal of the statics method were acquired on equal terms with 60 min image. The statics GBEF was calculated using the images of before fatty meal and post fatty meal by the statics method. The dynamic GBEF was calculated using the images of time of maximum bile juice uptake ($T_{max}$) and time of minimum bile juice uptake ($T_{min}$) images from the gallbladder time-activity curve. A bile juice is secreted from gallbladder while eating a fatty meal. that is named early GBEF and that was calculated using before fatty meal image of the statics method and 1 min image of the dynamic method. Results The result saw very big difference between two according to $T_{max}$. The result, were as follows. 1) In case of less than 1 min, the dynamic mean GBEF was $40.1{\pm}21.7%$, the statics mean GBEF was $51.5{\pm}23.6%$ in 16 cases. The early mean GBEF was $14.0{\pm}29.1%$. The GBEF of statics method was higher because that include secreted bile juice while performed stimulation of gallbladder. A difference of GB counts according to acquisition method and the early bile juice counts was $17.6{\pm}14.8%$ and $13.5{\pm}15.3%$. 2) In case of exceed than 1 min, the dynamic mean GBEF was $31.0{\pm}19.7%$, the statics mean GBEF was $21.3{\pm}19.4%$ in 7 cases. The early GBEF was $-6.9{\pm}4.9%$. The GBEF of dynamic method was higher because that include concentrated bile juice to $T_{max}$. A difference of GB counts according to acquisition method and the early bile juice counts was $14.3{\pm}7.3%$ and $5.9{\pm}3.9%$. Conclusion The statics method is very easy and simple, but in case of $T_{max}$ delay, the GBEF can be lower. The dynamic method is able to calculate accurately in case of $T_{max}$ delay, but in case of $T_{max}$ is less than 1 min, the GBEF can be lower because dynamic GBEF exclude secreted bile juice while performed stimulation of gallbladder. The best way to calculate GBEF is to scan with dynamic method preferentially and to choose suitable method between the two way after conform $T_{max}$ on the T-A curve of the dynamic method.

  • PDF

The Comparative Imaging Study on Mn-phthalocyanine and Mangafodipir trisodium in Experimental VX2 Animal Model (실험적으로 유발시킨 VX2 동물모델에서의 Mn-phthalocyanine과 Mangafodipir trisodium의 비교영상)

  • Park Hyun-Jeong;Ko Sung-Min;Kim Yong-Sun;Chang Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2004
  • Purpose : To measure the NMR relaxation properties of MnPC, to observe the characteristics of liver enhancement patterns on MR images in experimentally implanted rabbit VX2 tumor model, and to estimate the possibility of tissue specific contrast agent for MnPC in comparison with the hepatobiliary agent. Materials and Methods : Phthalocyanine (PC) was chelated with paramagnetic ions, manganese (Mn). 2.01 g (5.2 mmol) of phthalocyanine was mixed with 0.37 g (1.4 nlmol) of Mn chloride at $310^{\circ}C$ for 36 hours and then purified by chromatography ($CHCl_3:\;CH_3OH=98:2$, volume ratio) to obtain 1.04 g $(46\%)$ of MnPC (molecular weight = 2000 daltons). The T1/T2 relaxivity (R1/R2) for MnPC were determined at a 1.5 T (64 MHz) MR spectrometer. VX2 tumor model was experimentally implanted in the liver parenchyma of rabbits. All MR studies were performed on 1.5 T. The human extremity radio frequency coil of a bird cage type was employed. MR images were acquired at 17 to 24 days after VX2 carcinoma implantation.4 mmol/kg MnPC and 0.01 mmol/kg Mn-DPDP were injected via the ear vein of rabbits. T1-weighted images were obtained with spin-echo (TR/TE=516/14 msec) and fast multiplanar spoiled gradient recalled (TR/TE : 80/4 msec, $60^{\circ}$ flip angle) pulse sequence. Fast spin-echo (TR/TE=1200/85 msec) was used to obtain the T2-weighted images. Results : The value of T1/T2 relaxivity (R1/R2) of MnPC was $7.28\;mM^{-1}S^{-1}$ and $55.56\;mM^{-1}S^{-1}$ respectively at 1.5 T (64 MHz). Because the T2 relaxivity of MnPC that bonded strongly, covalently manganese with phthalocyanine was very high, the signal intensity of liver parenchyma was decreased on postcontrast T2-weighted images and we could easily distinguish the VX2 carcinoma within the liver parenchyma. When MnPC was administrated intravenously, the tumor margin delineation was more remarkable than Mn-DPDP-enhanced images. The enhancement of liver parenchyma with MnPC persisted at relatively high levels over at least one hour after injection of the contrast agents. Conclusion : The hepatic uptake and biliary excretion of MnPC, which are similar to Mn-DPDP, suggest that this agent is a new liver-specific agent. Also, MnPC seems to be used as a dual contrast agent (T1 and T2) with high T2 relaxivity. However, it is warranted that MnPC needs further investigation as a potential contrast agent for MR imaging of the liver. That is, further characterizations of MnPC are needed in vivo and in vitro before clinical trials. The diagnostic potential of MnPC will also have to be examined more in the animal models of additional types.

  • PDF

Hypoxemia In Liver Cirrhosis And Intrapulmonary Shunt Determination Using Tc-99m-MAA Whole Body Scan (간경화 환자에서의 저산소혈증과 Tc-99m-MAA 주사를 이용한 폐내단락 측정)

  • Lee, Kye-Young;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.504-512
    • /
    • 1994
  • Background: It is well known that severe hypoxemia is often associated with liver cirrhosis without preexisting cardiac or pulmonary diseases. Pulmonary vascular impairments, more specifically, intrapulmonary shunting have been considered as a major mechanism. Intrapulmonary shunting arises from pulmonary vascular dilatation at the precapillary level or direct arteriovenous communication and has relationship with the characteristic skin findings of spider angioma. However, these results are mainly from Western countries where alcoholic and primary biliary cirrhosis are dominant cuases of cirrhosis. It is uncertain that the same is true in viral hepatitiss associated liver cirrhosis, which is dominant causes of liver cirrhosis in Korea. We investigated the incidences of hypoxemia and orthodeoxia in Korean cirrhotic patients dominantly composed of postnecrotic cirrhosis and the significance of intrapulmonary shunting as the suggested mechanism of hypoxemia, Method: We performed the arterial blood gas analysis separately both at the supine and errect position in 48 stable cirrhotic patients without the evidences of severe complications such as ascites, variceal bleeding, and hepatic coma. According to the results of arterial blood gas analysis, all patients were divided into hypoxemic and normoxemic group. In each group, pulmonary function test and Tc-99m-MAA whole body scan were performed. The shunting fraction was calculated based on the fact that the sum of cerebral and bilateral renal blood flow is 32% of the systemic blood flow. Results: The hypoxemia of $PaO_2$ less than 80 mmHg was observed in 9 patients(18.8%) and Orthodeoxia more than 10 mmHg was observed in 8 patients(16.7%). But there was no patient with significant hypoxemia of $PaO_2$ less than 60 mmHg. $PaO_2$ was significantly decreased in the patients with spider angioma than the pathients without spider angioma and showed no correlation with the serologic type and severities of liver function test findings. Any parameters of pulmonary function test did not demonstrate the difference between normoxemic and hypoxemic group. But hypoxemic group showed significantly increased shunt fraction of $11.4{\pm}4.1%$ than normoxemic group of $4.1{\pm}2.0%$ (p<0.05). Conclusions: Hypoxemia is not infrequently observed complication in liver cirrhosis and intrapulmonary shunting is suggested to p1ay a major ro1e in the development of hypxemia. But there was no great likelihood of clinically significant hypoxemia in our domestic cirrhotic patients predominantly composed of postnecrotic type.

  • PDF

Usefulness of Abdominal Compressor Using Stereotactic Body Radiotherapy with Hepatocellular Carcinoma Patients (토모테라피를 이용한 간암환자의 정위적 방사선치료시 복부압박장치의 유용성 평가)

  • Woo, Joong-Yeol;Kim, Joo-Ho;Kim, Joon-Won;Baek, Jong-Geal;Park, Kwang-Soon;Lee, Jong-Min;Son, Dong-Min;Lee, Sang-Kyoo;Jeon, Byeong-Chul;Cho, Jeong-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2012
  • Purpose: We evaluated usefulness of abdominal compressor for stereotactic body radiotherapy (SBRT) with unresectable hepatocellular carcinoma (HCC) patients and hepato-biliary cancer and metastatic liver cancer patients. Materials and Methods: From November 2011 to March 2012, we selected HCC patients who gained reduction of diaphragm movement >1 cm through abdominal compressor (diaphragm control, elekta, sweden) for HT (Hi-Art Tomotherapy, USA). We got planning computed tomography (CT) images and 4 dimensional (4D) images through 4D CT (somatom sensation, siemens, germany). The gross tumor volume (GTV) included a gross tumor and margins considering tumor movement. The planning target volume (PTV) included a 5 to 7 mm safety margin around GTV. We classified patients into two groups according to distance between tumor and organs at risk (OAR, stomach, duodenum, bowel). Patients with the distance more than 1 cm are classified as the 1st group and they received SBRT of 4 or 5 fractions. Patients with the distance less than 1 cm are classified as the 2nd group and they received tomotherapy of 20 fractions. Megavoltage computed tomography (MVCT) were performed 4 or 10 fractions. When we verify a MVCT fusion considering priority to liver than bone-technique. We sent MVCT images to Mim_vista (Mimsoftware, ver .5.4. USA) and we re-delineated stomach, duodenum and bowel to bowel_organ and delineated liver. First, we analyzed MVCT images to check the setup variation. Second we compared dose difference between tumor and OAR based on adaptive dose through adaptive planning station and Mim_vista. Results: Average setup variation from MVCT was $-0.66{\pm}1.53$ mm (left-right) $0.39{\pm}4.17$ mm (superior-inferior), $0.71{\pm}1.74$ mm (anterior-posterior), $-0.18{\pm}0.30$ degrees (roll). 1st group ($d{\geq}1$) and 2nd group (d<1) were similar to setup variation. 1st group ($d{\geq}1$) of $V_{diff3%}$ (volume of 3% difference of dose) of GTV through adaptive planing station was $0.78{\pm}0.05%$, PTV was $9.97{\pm}3.62%$, $V_{diff5%}$ was GTV 0.0%, PTV was $2.9{\pm}0.95%$, maximum dose difference rate of bowel_organ was $-6.85{\pm}1.11%$. 2nd Group (d<1) GTV of $V_{diff3%}$ was $1.62{\pm}0.55%$, PTV was $8.61{\pm}2.01%$, $V_{diff5%}$ of GTV was 0.0%, PTV was $5.33{\pm}2.32%$, maximum dose difference rate of bowel_organ was $28.33{\pm}24.41%$. Conclusion: Despite we saw diaphragm movement more than 5 mm with flouroscopy after use an abdominal compressor, average setup_variation from MVCT was less than 5 mm. Therefore, we could estimate the range of setup_error within a 5 mm. Target's dose difference rate of 1st group ($d{\geq}1$) and 2nd group (d<1) were similar, while 1st group ($d{\geq}1$) and 2nd group (d<1)'s bowel_organ's maximum dose difference rate's maximum difference was more than 35%, 1st group ($d{\geq}1$)'s bowel_organ's maximum dose difference rate was smaller than 2nd group (d<1). When applicating SBRT to HCC, abdominal compressor is useful to control diaphragm movement in selected patients with more than 1 cm bowel_organ distance.

  • PDF