• Title/Summary/Keyword: Bilayer Lipid Membrane

Search Result 53, Processing Time 0.03 seconds

Inhibitory Effect of Lipid Bilayer Membrane on Protein Phosphatase 2A (Protein Phosphatase 2A의 활성화에 미치는 Lipid Bilayer Membrane의 저해 효과)

  • 남기열
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.302-307
    • /
    • 1992
  • Protein phosphatase 2A was obtained from a cytosolic fraction of bovine brain homogenate. The phosphatase activity using phosphorylated histone Hl as substrate was suppressed in the presence of liposomes composed of dipalmitoylphosphatidylcholine(DPPC) or the mixture of phosphatidylserine and DPPC. The binding of protein phosphatase to liposome was indicated by the facts that the phosphatase activity of the supernatant of protein phosphatase/multilayer vesicle mixture was decreased with increasing amount of liposome, and that [$^{125}I$]-labeled protein phosphatase was coeluted with liposome. However, the affinity of the protein for phospholipid membrane was not so high. On the other hand, okadaic acid and liposome reduced the phosphatase activity synergistically, which means that okadaic acid binds neither to lipid membrane nor to the membrane-associated phosphatase, The inhibitory effect of liposome was, therefore, ascribed to association of the protein phosphatase 2A with the lipid bilayer membrane.

  • PDF

Molecular Dynamics Simulations of Hemolytic Peptide δ-Lysin Interacting with a POPC Lipid Bilayer

  • Lorello, Kim M.;Kreutzberger, Alex J.;King, Allison M.;Lee, Hee-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.783-792
    • /
    • 2014
  • The binding interaction between a hemolytic peptide ${\delta}$-lysin and a zwitterionic lipid bilayer POPC was investigated through a series of molecular dynamics (MD) simulations. ${\delta}$-Lysin is a 26-residue, amphipathic, ${\alpha}$-helical peptide toxin secreted by Staphylococcus aureus. Unlike typical antimicrobial peptides, ${\delta}$-lysin has no net charge and it is often found in aggregated forms in solution even at low concentration. Our study showed that only the monomer, not dimer, inserts into the bilayer interior. The monomer is preferentially attracted toward the membrane with its hydrophilic side facing the bilayer surface. However, peptide insertion requires the opposite orientation where the hydrophobic side of peptide points toward the membrane interior. Such orientation allows the charged residues, Lys and Asp, to have stable salt bridges with the lipid head-group while the hydrophobic residues are buried deeper in the hydrophobic lipid interior. Our simulations suggest that breaking these salt bridges is the key step for the monomer to be fully inserted into the center of lipid bilayer and, possibly, to translocate across the membrane.

The penetration site of local anesthetics into liposomal membrane

  • Han, Suk-Kyu;Bae, Song-Ja;Il-Yun;Kim, Nam-Hong
    • Archives of Pharmacal Research
    • /
    • v.8 no.4
    • /
    • pp.205-211
    • /
    • 1985
  • The distribution of local anesthetics between the hydrocarbone interior and surface area of the lipid bilayer of liposomal membrane was calculated employeg fluorescence probe technique. The quenching of fluorescence probe technique. The quenching of fluorescence probe technique. The quenching of fluorescence of 12-(9-anthroyl) stearic acid and N-octadecyl naphthyl-2-amini-6-sulfonic acid by the local anesthetics in liposomal system was used to calculate the distribution. The Stern-Volmer equation was modified and employed for this calculation. The results showed that procaine hydrocloride and benzocaine were mainly distributed on the surface area of the lipid bilayer of the liposoal membrane, while tetracaine hydrochloride penetrated effectively into the hydrocarbon interior and showed even distribution in the lipid bilayer.

  • PDF

Effect of Drug Substances on the Microviscosity of Lipid Bilayer of Liposomal Membrane

  • Han, Suk-Kyu;Kim, Jin-Suk;Lee, Yong-Soo;Kim, Min
    • Archives of Pharmacal Research
    • /
    • v.13 no.2
    • /
    • pp.192-197
    • /
    • 1990
  • The microviscosites of the lipid bilayers of liposomal membranes of phospholipids were measured by the intermolecular excimer, formation method employing pyrene as a fluorescence probe, and the effects of n-alkanols and other local anesthetics on the microviscosity were investigated. The results showed that the n-alkanols and the ohter local anesthetics effectively lowered the microviscosity of the lipid bilayer of the dipalmitoyl phosphatidycholine liposomal membrane in proportion to the concentration of the additives. Moreover, there was a fairly good correlation between the ocal anesthetic activities and the microviscosity-lowering activities of these drugs. This results suggests that the nerve blocking activity of local anesthetics might have some relation with their activity fluidizing the lipid bilayer of biomembrane.

  • PDF

A study of stabilization effect of .alpha.-tocopherol incorporated into liposomal phospholipid membrane

  • Bae, Song-Ja;Kim, Nam-Hong
    • Archives of Pharmacal Research
    • /
    • v.13 no.1
    • /
    • pp.64-68
    • /
    • 1990
  • The stabilization effect of .alpha.-tocopherol incorporated into liposomal phospholipid membrane was investigated by fluorospectrophotometry and UV-visible spectretarded by the presence of .alpha.-tocopherol in the bilayer of liposomal phospholipid membrane relative to cholesterol-containing liposomes and pure phospholipid liposomes. .alpha.-tocopherol-containing liposomes prolonged the oxidation of liposomes-embedded heme as those of cholesterol-containing liposomes and pure phospholipid liposomes. Thus .alpha.-tocopherol-containing liposomes may be useful for the carrier systems of nutrients and drugs to phospholipid bilayer and stabilized liposomes.

  • PDF

A Comprehensive Understanding of Model Lipid Membranes: Concepts to Applications

  • Sonam Baghel;Monika Khurana
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • The cell membrane, also known as the biological membrane, surrounds every living cell. The main components of cell membranes are lipids and therefore called as lipid membranes. These membranes are mainly made up of a two-dimensional lipid bilayer along with integral and peripheral proteins. The complex nature of lipid membranes makes it difficult to study and hence artificial lipid membranes are prepared which mimic the original lipid membranes. These artificial lipid membranes are prepared from phospholipid vesicles (liposomes). The liposomes are formed when self-forming phospholipid bilayer comes in contact with water. Liposomes can be unilamellar or multilamellar vesicles which comprises of phospholipids that can be produced naturally or synthetically. The phospholipids are non-toxic, biodegradable and are readily produced on a large scale. These liposomes are mostly used in the drug delivery systems. This paper offers comprehensive literature with insights on developing basic understanding of lipid membranes from its structure, organization, and phase behavior to its potential use in biomedical applications. The progress in the field of artificial membrane models considering methods of preparation of liposomes for mimicking lipid membranes, interactions between the lipid membranes, and characterizing techniques such as UV-visible, FTIR, Calorimetry and X-ray diffraction are explained in a concise manner.

Tolaasin Forms Various Types of Ion Channels in Lipid Bilayer

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.34-34
    • /
    • 1998
  • Tolaasin is a channel forming bacterial toxin produced by Pseudomonas tolaasii and causes a brown blotch disease on cultivated oyster mushrooms. When tolaasin molecules form channels in the membranes of mushroom cells, they destroy cellular membrane structure, known as 'colloid osmotic lysis'. In order to understand the molecular mechanisms forming membrane channels by tolaasin molecules, we have investigated the electrophysiological characteristics of tolaasin-induced channels in lipid bilayer.(omitted)

  • PDF

Microfluidic System for the Measurement of Cupric Ion Concentration using Bilayer Lipid Membrane on Silver Surface (은 표면의 이중층 지질막에 의한 구리 이온 농도 측정용 마이크로플루이딕 시스템)

  • Jeong, Beum Seung;Kim, Do Hyun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • A microfluidic system has been developed using biomaterial for the measurement of cupric ion concentration. The cell-membrane-mimicking bilayer lipid membrane(BLM)-coated silver electrode was used for the sensing of cupric ion concentration. The silver-supported BLM could increase its stability. A silver-supported bilayer lipid membrane(s-BLM) was easily obtained using its self-assembling characteristics by immersing silver wire into lipid(phosphatidylcholine; PC) solution and then dipping into aqueous KCl solution. These s-BLMs were used to determine the relationship between $Cu^{2+}$ concentration and current crossing s-BLM. Their relationship showed high linearity and reproducibility. The calibration curve was constructed to express the relationship between $Cu^{2+}$ concentration and current in the $Cu^{2+}$ concentration range of 10 and $130{\mu}M$. This calibration curve was used to measure $Cu^{2+}$ concentration in an unknown sample. Microfluidic system with s-BLM was made of PDMS(polydimethyl siloxane) using typical soft photolithography and molding technique. This integrated system has various functions such as activation of the silver surface without cutting silver wire, coating of BLM on silver surface, injection of KCl buffer solution, injection of $Cu^{2+}$ sample and measurement of $Cu^{2+}$ concentration in the sample.

Metachromasy of Methylene Blue and Thionine on the Phospholipid Bilayer Membrane (Phospholipid 이중층막에서 Methylene Blue와 Thionine의 Metachromasy)

  • Kim, Ki-Jun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.43-49
    • /
    • 1996
  • Metachromatic properties of admixture of thionine and methylene blue(MB) in aqueous solution and phospholipid bilayer membrane have been studied by absorption spectroscopy. When thionine and MB were mixed, new coaggregate has been formed because of MB was redistributed to thionine aggregate. In phosphlipid bilayer membrane system, the highly concentrated thionine was easily formed the coaggregation with MB moiety independent of MB concentration, and absorption band of admixture were more transferred to short wavelength than aqueous system. In monomeric thionine concentration, the coaggregation band was observed at the middle wavelength between the site of monomeric thionine and the site of dimeric MB in the presence of lipid bilayer membrane.

Effect of Variation of Membrane Thickness on the Activity of $Ca^{2+}$-activated $K^+$ Channel in Planar Lipid Bilayers

  • Seo, Hyoung-Sik;Ryu, Pan-Dong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.56-56
    • /
    • 1999
  • Change of membrane property can affect the activity of membrane proteins. In this work, we investigated the single channel properties of large conductance $Ca^{2+}$-activated $K^{+}$(BK) channels in planar lipid bilayers of different thickness. First, we recorded the activity of single BK channels from rat skeletal muscle incorporated into the control bilayer, then increased the bilayer thickness by perfusing the recording solution with the one saturated with n-pentane, or reduced the thickness by adding diheptanoylphosphatidylcholine (di$C_{7:0}$PC) to the recording soluton.(omitted)

  • PDF