• Title/Summary/Keyword: Bilateral Teleoperation

Search Result 40, Processing Time 0.027 seconds

A Neurofuzzy Algorithm-Based Advanced Bilateral Controller for Telerobot Systems

  • Cha, Dong-hyuk;Cho, Hyung-Suck
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.100-107
    • /
    • 2002
  • The advanced bilateral control algorithm, which can enlarge a reflected force by combining force reflection and compliance control, greatly enhances workability in teleoperation. In this scheme the maximum boundaries of a compliance controller and a force reflection gain guaranteeing stability and good task performance greatly depend upon characteristics of a slave arm, a master arm, and an environment. These characteristics, however, are generally unknown in teleoperation. It is, therefore, very difficult to determine such maximum boundary of the gain. The paper presented a novel method for design of an advanced bilateral controller. The factors affecting task performance and stability in the advanced bilateral controller were analyzed and a design guideline was presented. The neurofuzzy compliance model (NFCM)-based bilateral control proposed herein is an algorithm designed to automatically determine the suitable compliance for a given task or environment. The NFCM, composed of a fuzzy logic controller (FLC) and a rule-learning mechanism, is used as a compliance controller. The FLC generates compliant motions according to contact forces. The rule-learning mechanism, which is based upon the reinforcement learning algorithm, trains the rule-base of the FLC until the given task is done successfully. Since the scheme allows the use of large force reflection gain, it can assure good task performance. Moreover, the scheme does not require any priori knowledge on a slave arm dynamics, a slave arm controller and an environment, and thus, it can be easily applied to the control of any telerobot systems. Through a series of experiments effectiveness of the proposed algorithm has been verified.

Bilateral Controller for Time-varying Communication Delay: Time Domain Passivity Approach (시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기 : 시간영역 수동성 기법)

  • Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1099-1105
    • /
    • 2007
  • In this paper, modified two-port time-domain passivity approach is proposed for stable bilateral control of teleoperators under time-varying communication delay. We separate input and output energy at each port of a bilateral controller, and propose a sufficient condition for satisfying the passivity of the bilateral controller including time-delay. Output energy at the master port should be less than the transmitted input energy from the slave port with time-delay, and output energy at the slave port should be less than the transmitted input energy from the master port with time-delay. For satisfying above two conditions, two passivity controllers are attached at each port of the bilateral controller. A packet reflector with wireless internet connection is used to introduce serious time-varying communication delay of teleoperators. Average amount of time-delay was about 190(msec) for round trip, and varying between 175(msec) and 275(msec). Moreover some data packet was lost during the communication due to UDP data communication. Even under the serious time-varying delay and packet loss communication condition, the proposed approach can achieve stable teleoperation in free motion and hard contact as well.

Impedance Model based Bilateral Control for Force reflection of a Laparoscopic Surgery Robot (복강경 수술 로봇의 힘 반향을 위한 임피던스 모델 기반의 양방향 제어)

  • Yoon, Sung-Min;Kim, Won-Jae;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.801-806
    • /
    • 2014
  • LAS (Laparoscopy Assisted Surgery) has been substituted alternatively for traditional open surgery. However, when using a commercialized robot assisted laparoscopic such as Da Vinci, surgeons have encountered some problems due to having to depend only on information by visual feedback. To solve this problem, a haptic function is required. In order to realize the haptic teleoperation system, a force feedback and bilateral control system are needed. Previous research showed that the perturbation value estimated by a SPO (Sliding Perturbation Observer) followed a reaction force that loaded on the surgical robot instrument. Thus, in this paper, the force feedback problem of surgical robots is solved through the reaction force estimation method. This paper then introduces the possibility of the haptic function realization of a laparoscopic surgery robot using a bilateral control system. For bilateral control, the master uses an impedance control and the slave uses a SMC (Sliding Mode Control). The experiment results show that a torque and force sensorless teleoperation system can be implemented using a bilateral control structure.

A New Robust Controller Design Architecture of Teleoperation to Overcome the Compensation Problem

  • Park, Kyong-Ho;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.609-615
    • /
    • 2003
  • There were many papers on the bilateral teleoperation system. But a few papers dealt with the controller design method in the presence of uncertainties, disturbances and measurement noises. In this paper, we propose a robust controller design framework in teleoperation, which can overcome the compensation problem that will be defined. To prove the effectiveness of the method of proposed design, comparative simulation with the existing four channel design method was performed

  • PDF

A Bilateral Teleoperation Control Scheme for 2-DOF Manipulators with High Reduction Ratio Joints

  • Ahn, Sung-Ho;Yoon, Ji-Sup;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.519-519
    • /
    • 2000
  • Since the dynamics of the slave manipulator with high reduction ratio joints is likely to be much slower than that of the master manipulator, the control input the slave manipulator is so frequently saturated. This paper proposes a bilateral teleoperation control scheme for 2-DOF manipulators with high reduction ratio joints, which can effectively compensate the control input saturation. In the proposed scheme, the controllers of the slave manipulator are designed with an anti-windup feature and forces caused by the saturation are reflected to the operator holding the operating handle of the master manipulator. When the control input of the slave manipulator is saturated, the master manipulator moves slowly file to tile reflected forces. In this way, the position tracking performance of the slave manipulator with high reduction ratio joints can be enhanced regardless of saturation. The proposed scheme is shown to give excellent position tracking performance through a series of experiments.

  • PDF

Identification of Feasible Scaled Teleoperation Region Based on Scaling Factors and Sampling Rates

  • Hwang, Dal-Yeon;Blake Hannaford;Park, Hyoukryeol
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • The recent spread of scaled telemanipulation into microsurgery and the nano-world increasingly requires the identification of the possible operation region as a main system specification. A teleoperation system is a complex cascaded system since the human operator, master, slave, and communication are involved bilaterally. Hence, a small time delay inside a master and slave system can be critical to the overall system stability even without communication time delay. In this paper we derive an upper bound of the scaling product of position and force by using Llewellyns unconditional stability. This bound can be used for checking the validity of the designed bilateral controller. Time delay from the sample and hold of computer control and its effects on stability of scaled teleoperation are modeled and simulated based on the transfer function of the teleoperation system. The feasible operation region in terms of position and force scaling decreases sharply as the sampling rate decreases and time delays inside the master and slave increase.

  • PDF

A Survey of Haptic Control Technology (햅틱 제어 기술 동향)

  • Ryu, Je-Ha;Kim, Jae-Ha;Seo, Chang-Hoon;Lim, Yo-An;Kim, Jong-Phil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.283-295
    • /
    • 2009
  • Haptics technology allows one to interact with virtual environments, augmented environments, and real environments providing tactual sensory information. Science and technology of haptics can in general be classified into three groups: machine haptics, computer haptics, and human haptics. This paper surveys the state-of-the-art of haptic control technology for virtual environments and teleoperation (real environments) and then proposes possible future research directions in the following areas: haptic stability control, bilateral teleoperation control, and stability enhancement control.

A Stabilizing Control technique for Bilateral Teleoperation System with Time delay using Adjustable Characteristic Impedance of wave Variable (웨이브 변수의 가변 특성 임피던스를 이용한 시간지연을 갖는 양 방향 원격조작시스템의 안정화 제어 방법)

  • 김형욱;김종복;서일홍;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.600-609
    • /
    • 2003
  • A hybrid stabilization approach involving both Passivity Observer/passivity Controller and wave variables is addressed to stabilize the teleoperation system with time delay. To guarantee the stability of master or slave side, Passivity Observer and Passivity Controller are applied. But Passivity Observer and Passivity Controller technique cannot deal with communication delay and even small communication delay cause the system to be unstable. To cope with this problem, wave variables are additionally employed to have robustness to arbitrary delays. To show the validity of our proposed approach, several computer simulation results are illustrated.

ARMA-based data prediction method and its application to teleoperation systems (ARMA기반의 데이터 예측기법 및 원격조작시스템에서의 응용)

  • Kim, Heon-Hui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.56-61
    • /
    • 2017
  • This paper presents a data prediction method and its application to haptic-based teleoperation systems. In general, time delays inevitably occur during data transmission in a network environment, which degrades the overall performance of haptic-based teleoperation systems. To address this situation, this paper proposes an autoregressive moving average (ARMA) model-based data prediction algorithm for estimating model parameters and predicting future data recursively in real time. The proposed method was applied to haptic data captured every 5 ms while bilateral haptic interaction was carried out by two users with an object in a virtual space. The results showed that the prediction performance of the proposed method had an error of less than 1 ms when predicting position-level data 100 ms ahead.

A Robust Adaptive Impedance Control Algorithm for Haptic Interfaces (강인적응 알고리즘을 통한 Haptic Interlace의 임피던스 제어)

  • Park, Heon;Lee, Sang-Chul;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.393-400
    • /
    • 2002
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the fueling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/force commands, impedance parameters are always varying. When the impedance parameters between an operator and the haptic interface and the dynamic model are known precisely, many model based control theories and methods can be used to control the device accurately. However, due to the parameters'variations and the uncertainty of the dynamic model, it is difficult to control haptic interfaces precisely. This paper presents a robust adaptive impedance control algorithm for haptic interfaces.