• Title/Summary/Keyword: Bike brake

Search Result 4, Processing Time 0.069 seconds

Fatigue Analysis of Bike Brake under Nonuniform Load (불규칙 하중을 받는 자전거 브레이크의 피로 해석)

  • Cho, Ja-Eung;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.133-141
    • /
    • 2012
  • This study investigates structural and fatigue analyses of bike brake. Maximum equivalent stress of the model of mountain bike is 4 times as much as the model of general bike at static analysis. In cases of mountain and general bikes, maximum damage frequency at load of 'SAE bracket history' with the severest change of load becomes as much as 16 times than the most stable load of 'Sample history' among the nonuniform fatigue loads. In case of mountain bike, the possibility of maximum damage becomes 3% at the load of 'Sample history' with the average stress of 0 to $-3{\times}10^4$MPa and the amplitude stress of 0 to $10^4$MPa. In case of general bike, the possibility of maximum damage becomes 3% at the load of 'Sample history' with the average stress of 0 to $-0.8{\times}10^4$MPa and the amplitude stress of 0 to $0.2{\times}10^4$MPa. This stress state can be shown as 5 to 6 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The analysis result of this study can be effectively utilized for the safe design of bike brake.

Structural Durability Analysis due to Hole Configuration Variation of Bike Disc Brake (자전거 디스크 브레이크 구멍 형상 변화에 따른 구조적 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.44-49
    • /
    • 2014
  • As expansion and contraction of bike disk brake are happened continuously by temperature at repeated urgent braking. In this study, 3 kinds of model are designed according to configurations of holes and thermal durabilities on bike disk brake are investigated by comparing 3 models through temperature and thermal analyses. Maximum thermal stress happened at the disk contacted with pad and the connection part fixing disk rotor. Instead of initial state, the temperature is uniformly distributed at transient state. As the area of hole at disk rotor face becomes wider, thermal stress becomes lower at the initial state. On the other hand, in case the number of holes increases, thermal stress becomes lower at the elapsed time of 100 seconds. The thermal durability of bike disk brake can be improved by applying this study result with configurations of holes.

Thermal Stress Analysis of Disk Rotor by Configuration of Bike Brake (자전거 브레이크에서의 디스크 로터의 형상별 열응력 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.287-291
    • /
    • 2015
  • This study investigates the result of thermal stress analysis on disk rotor by classes at bike brake. In the analysis result of thermal deformation at the steady state, maximum deformations at models 1, 2 and 3 are 0.14347mm, 0.15823mm and 0.16028mm respectively. The deformation becomes larger as the field goes on from the center to the outside at disk rotor. As there are models 1, 2 and 3 in the order of maximum deformation, model 1 has safest among three models. In the analysis result of thermal stress at steady and transient states, there are models 1, 2 and 3 in the order of maximum stress. Model 1 becomes most excellent on strength and safety among three models. By using the analysis result of disk rotor model at bike disk, it is possible to design the model applied practically at the safe driving of bike.

Cost-Effective Regenerative Brake Control Method for E-bike with Rear Hub Motor (후륜 허브 전동기를 가지는 전기 자전거에서의 비용효과적 회생 제동)

  • Kim, Jun-ho;Kim, Moon-Young;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.245-246
    • /
    • 2014
  • 본 논문에서는 외전형 영구자석 동기 전동기의 전기적 브레이크 동작 시에 발생하는 회생 에너지를 분석한다. 그리고 전류 정보 없이 전동기 속도 및 배터리의 전압만으로 회생 전력을 제어하는 방법을 제안한다. 후륜 허브 전동기를 가지는 자전거 프로토 타입을 제작하고, 제안하는 회생 제동 제어 기법을 적용한 실험을 통해 제안 기법을 검증한다.

  • PDF