• Title/Summary/Keyword: Bigdata analysis

Search Result 345, Processing Time 0.022 seconds

Study on Anomaly Detection Method of Improper Foods using Import Food Big data (수입식품 빅데이터를 이용한 부적합식품 탐지 시스템에 관한 연구)

  • Cho, Sanggoo;Choi, Gyunghyun
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.19-33
    • /
    • 2018
  • Owing to the increase of FTA, food trade, and versatile preferences of consumers, food import has increased at tremendous rate every year. While the inspection check of imported food accounts for about 20% of the total food import, the budget and manpower necessary for the government's import inspection control is reaching its limit. The sudden import food accidents can cause enormous social and economic losses. Therefore, predictive system to forecast the compliance of food import with its preemptive measures will greatly improve the efficiency and effectiveness of import safety control management. There has already been a huge data accumulated from the past. The processed foods account for 75% of the total food import in the import food sector. The analysis of big data and the application of analytical techniques are also used to extract meaningful information from a large amount of data. Unfortunately, not many studies have been done regarding analyzing the import food and its implication with understanding the big data of food import. In this context, this study applied a variety of classification algorithms in the field of machine learning and suggested a data preprocessing method through the generation of new derivative variables to improve the accuracy of the model. In addition, the present study compared the performance of the predictive classification algorithms with the general base classifier. The Gaussian Naïve Bayes prediction model among various base classifiers showed the best performance to detect and predict the nonconformity of imported food. In the future, it is expected that the application of the abnormality detection model using the Gaussian Naïve Bayes. The predictive model will reduce the burdens of the inspection of import food and increase the non-conformity rate, which will have a great effect on the efficiency of the food import safety control and the speed of import customs clearance.

A Study on AI Industrial Ecosystem to Foster Artificial Intelligence Industry in Busan (부산지역 인공지능 산업 육성을 위한 AI 산업생태계 연구)

  • Bae, Soohyun;Kim, Sungshin;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.121-133
    • /
    • 2020
  • This study was carried out to set the direction of the new industry policy of Busan city by analyzing the changing trend of artificial intelligence technology that has recently developed rapidly and predicting the direction of future development. The company wanted to draw up support measures to utilize artificial intelligence technology, which has been rapidly emerging in the market, in the region's specialized industry. Artificial intelligence is a key keyword in the fourth industrial revolution and artificial intelligence-based data utilization technology can be used in various fields from manufacturing processes to services, and is entering an era of super-fusion in which barriers between technologies and industries will be broken down. In this study, the direction of promotion for fostering Busan as an artificial intelligence city was derived based on the comparison and analysis of artificial intelligence-related ecosystems among major local governments. In this study, we wanted to present a plan to create an artificial intelligence industrial ecosystem that can be called a key policy to foster Busan as an 'AI City'. Busan's plan to foster the AI industry ecosystem is aimed at establishing a policy direction to ultimately nurture the artificial intelligence industry as Busan's future food source.

A Study on Smart City Project Evaluation System: Focusing on Case Analysis of IFEZ Smart City (스마트시티 프로젝트 평가체계에 대한 연구: IFEZ 스마트시티 사례분석을 중심으로)

  • Sang-Ho Lee;Hee-Yeon Jo;Yun-Hong Min
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.83-97
    • /
    • 2023
  • Project evaluation is the process of evaluating the progress and results of a project. Smart city projects can be divided into system components (infrastructure, services, platforms), or projects can run simultaneously for multiple services. In addition, services are developed and expanded through additional projects. In order to ensure that the smart city, which is composed of various projects, proceeds in accordance with the goals and strategies, periodic project evaluation is required during the project implementation process. The smart city project evaluation system proposed in this paper is designed to provide comprehensive and objective indicators by reflecting various factors that must be considered for projects occurring in all stages of planning, design, construction, and operation of smart cities. The indicators derived from the evaluation system can be used by decision makers to determine the direction of smart city project development. In addition, it is designed so that the performance of the project can be evaluated interim before the end of the project and the feedback obtained from it can be reflected. To introduce the application method of the smart city project evaluation system proposed in this study, the evaluation system developed in this study was applied to the smart city project case of Incheon Free Economic Zone (IFEZ). Based on the evaluation results, items that can maximize the improvement effect of each smart city project item were presented, and the direction of smart city project implementation was suggested. By utilizing a smart city project evaluation system that reflects the characteristics of smart city projects that are composed of multiple projects, comprehensive planning and management of smart city projects will be possible, and this study will serve as a reference for identifying priority improvement factors for projects.

Developing the Strategies of Redesigning the Role of Retail Stores Using Cluster Analysis: The Case of Mongolian Retail Company (클러스터링을 통한 유통매장의 역할 재설계 전략 수립: 몽골유통사를 대상으로)

  • Tsatsral Telmentugs;KwangSup Shin
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.131-156
    • /
    • 2023
  • The traditional retail industry significantly changed over the past decade due to the mobile and online technologies. This change has been accompanied by a shift in consumer behavior regarding purchasing patterns. Despite the rise of online shopping, there are still specific categories of products, such as "Processed food" in Mongolia, for which traditional shopping remains the preferred purchase method. To prepare for the inevitable future of retail businesses, firms need to closely analyze the performance of their offline stores to plan their further actions in a new multi-channel environment. Retailers must integrate diverse channels into their operations to stay relevant and adjust to the shifting market. In this research, we have analyzed the performance data such as sales, profit, and amount of sales of offline stores by using clustering approach. From the clustering, we have found the several distinct insights by comparing the circumstances and performance of retail stores. For the certain retail stores, we have proposed three different strategies: a fulfillment hub store between online and offline channels, an experience store to elongate customers' time on the premises, and a merge between two non-related channels that could complement each other to increase traffic based on the store characteristics. With the proposed strategies, it may enhance the user experience and profit at the same time.

Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers (제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증)

  • Young-Jin Kang;;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.

Characteristics of temporal-spatial variations of zooplankton community in Gomso Bay in the Yellow Sea, South Korea (서해 곰소만에 출현하는 동물플랑크톤 군집의 시·공간적 변동 특성)

  • Young Seok Jeong;Min Ho Seo;Seo Yeol Choi;Seohwi Choo;Dong Young Kim;Sung-Hun Lee;Kyeong-Ho Han;Ho Young Soh
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • To understand the spatiotemporal distribution pattern of zooplankton and the environmental factors influencing zooplankton abundance in Gomso Bay, major harvesting area of Manila clam (Venerupis philippinarum) in South Korea, zooplankton sampling was conducted four times in autumn (October 2022), winter (January 2023), early spring (March 2023), and spring (May 2023). Among the environmental factors of Gomso Bay, water temperature, chlorophyll a concentration (Chl-a), dissolved oxygen (DO), and pH observed different patterns, while salinity and suspended particulate matter(SPM) showed no significant statistical differences between the survey periods. The zooplankton in Gomso Bay occurred 33, 29, 27, and 29 taxonomic groups during each respective survey period. In October 2022 and May 2023, arthropod plankton were dominated, while in January and March 2023, protozoa were primarily dominant. Among the Arthropods, copepods including Acartia hongi, Paracalanus parvus s. l., Corycaeus spp., and Oithona spp. commonly found along Korean coastal areas of the Yellow Sea, were dominated. Cluster analysis based on zooplankton abundance indicated a single community (stable condition) in each season, attributed to low dissimilarity distances, while three distinct clusters (autumn, winter-early spring, spring) between seasons indicated a highly seasonal environment in Gomso Bay.

LNG Gas Demand Forecasting in Incheon Port based on Data: Comparing Time Series Analysis and Artificial Neural Network (데이터 기반 인천항 LNG 수요예측 모형 개발: 시계열분석 및 인공신경망 모형 비교연구)

  • Beom-Soo Kim;Kwang-Sup Shin
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.165-175
    • /
    • 2023
  • LNG is a representative imported cargo at Incheon Port and has a relatively high contribution to the increase/decrease in overall cargo volume at Incheon Port. In addition, in the view point of nationwide, LNG is the one of the most important key resource to supply the gas and generate electricity. Thus, it is very essential to identify the factors that have impact on the demand fluctuation and build the appropriate forecasting model, which present the basic information to make balance between supply and demand of LNG and establish the plan for power generation. In this study, different to previous research based on macroscopic annual data, the weekly demand of LNG is converted from the cargo volume unloaded by LNG carriers. We have identified the periodicity and correlations among internal and external factors of demand variability. We have identified the input factors for predicting the LNG demand such as seasonality of weekly cargo volume, the peak power demand, and the reserved capacity of power supply. In addition, in order to predict LNG demand, considering the characteristics of the data, time series prediction with weekly LNG cargo volume as a dependent variable and prediction through an artificial neural network model were made, the suitability of the predictions was verified, and the optimal model was established through error comparison between performance and estimates.

A Study on AI Adoption Intentions: Focused on Small Businesses (AI의 수용의도에 관한 연구: 중소기업을 중심으로)

  • Chang Woo Kim;Seok Chan Jeong;Sang Lee Cho
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.169-186
    • /
    • 2024
  • This study aims to analyze the acceptance factors for expanding the adoption of AI by SMEs and draw practical and policy implications. To this, we conducted an empirical analysis of AI acceptance factors among 315 SMEs in various industries such as manufacturing, service, and information and communication sectors located in Korea. Based on the UTAUT, we examined the influence of decision-making reliability, perceived awareness, policy support, education and training, perceived cost, perceived risk, and system complexity, and found that decision-making reliability positively affects performance expectancy and social influence, perceived awareness positively affects performance expectancy and effort expectancy, policy support positively affects social influence and facilitating conditions, and education and training positively affects effort expectancy and facilitating conditions. Perceived cost had a negative effect on social influence and facilitating conditions, and perceived risk had a negative effect on performance expectancy and social influence. System complexity had a negative effect on effort expectancy but no effect on facilitating conditions. These results are expected to be widely utilized as basic research for the diffusion of AI in industry and provide practical and policy implications for promoting the adoption of AI in SMEs.

A Time Series Forecasting Model with the Option to Choose between Global and Clustered Local Models for Hotel Demand Forecasting (호텔 수요 예측을 위한 전역/지역 모델을 선택적으로 활용하는 시계열 예측 모델)

  • Keehyun Park;Gyeongho Jung;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.31-47
    • /
    • 2024
  • With the advancement of artificial intelligence, the travel and hospitality industry is also adopting AI and machine learning technologies for various purposes. In the tourism industry, demand forecasting is recognized as a very important factor, as it directly impacts service efficiency and revenue maximization. Demand forecasting requires the consideration of time-varying data flows, which is why statistical techniques and machine learning models are used. In recent years, variations and integration of existing models have been studied to account for the diversity of demand forecasting data and the complexity of the natural world, which have been reported to improve forecasting performance concerning uncertainty and variability. This study also proposes a new model that integrates various machine-learning approaches to improve the accuracy of hotel sales demand forecasting. Specifically, this study proposes a new time series forecasting model based on XGBoost that selectively utilizes a local model by clustering with DTW K-means and a global model using the entire data to improve forecasting performance. The hotel demand forecasting model that selectively utilizes global and regional models proposed in this study is expected to impact the growth of the hotel and travel industry positively and can be applied to forecasting in other business fields in the future.

Towards Efficient Aquaculture Monitoring: Ground-Based Camera Implementation for Real-Time Fish Detection and Tracking with YOLOv7 and SORT (효율적인 양식 모니터링을 향하여: YOLOv7 및 SORT를 사용한 실시간 물고기 감지 및 추적을 위한 지상 기반 카메라 구현)

  • TaeKyoung Roh;Sang-Hyun Ha;KiHwan Kim;Young-Jin Kang;Seok Chan Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.73-82
    • /
    • 2023
  • With 78% of current fisheries workers being elderly, there's a pressing need to address labor shortages. Consequently, active research on smart aquaculture technologies, centered on object detection and tracking algorithms, is underway. These technologies allow for fish size analysis and behavior pattern forecasting, facilitating the development of real-time monitoring and automated systems. Our study utilized video data from cameras outside aquaculture facilities and implemented fish detection and tracking algorithms. We aimed to tackle high maintenance costs due to underwater conditions and camera corrosion from ammonia and pH levels. We evaluated the performance of a real-time system using YOLOv7 for fish detection and the SORT algorithm for movement tracking. YOLOv7 results demonstrated a trade-off between Recall and Precision, minimizing false detections from lighting, water currents, and shadows. Effective tracking was ascertained through re-identification. This research holds promise for enhancing smart aquaculture's operational efficiency and improving fishery facility management.