• 제목/요약/키워드: Bigdata Platform

검색결과 62건 처리시간 0.019초

항공안전데이터 구조 분석 및 표준 분류체계에 관한 연구 (A Study on the Analysis of Aviation Safety Data Structure and Standard Classification)

  • 김준환;임재진;이장룡
    • 한국항공운항학회지
    • /
    • 제28권4호
    • /
    • pp.89-101
    • /
    • 2020
  • In order to enhance the safety of the international aviation industry, the International Civil Aviation Organization has recommended establishing an operational foundation for systematic and integrated collection, storage, analysis and sharing of aviation safety data. Accordingly, the Korea aviation industry also needs to comprehensively manage the safety data which generated and collected by various stakeholders related to aviation safety, and through this, it is necessary to previously identify and remove hazards that may cause accident. For more effective data management and utilization, a standard structure should be established to enable integrated management and sharing of safety data. Therefore, this study aims to propose the framework about how to manage and integrate the aviation safety data for big data-based aviation safety management and shared platform.

Machine Learning-Based Programming Analysis Model Proposal : Based on User Behavioral Analysis

  • Jang, Seonghoon;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.179-183
    • /
    • 2020
  • The online education platform market is developing rapidly after the coronavirus infection-19 pandemic. As school classes at various levels are converted to non-face-to-face classes, interest in non-face-to-face online education is increasing more than ever. However, the majority of online platforms currently used are limited to the fragmentary functions of simply delivering images, voice and messages, and there are limitations to online hands-on training. Indeed, digital transformation is a traditional business method for increasing coding education and a corporate approach to service operation innovation strategy computing thinking power and platform model. There are many ways to evaluate a computer programmer's ability. Generally, piecemeal evaluation methods are used to evaluate results in time through coding tests. In this study, the purpose of this study is to propose a comprehensive evaluation of not only the results of writing, but also the execution process of the results, etc., and to evaluate the programmer's propensity habits based on the programmer's coding experience to evaluate the programmer's ability and productivity.

국내 전력산업에서의 빅데이터 플랫폼 성과 평가 방법론 (Methodology for Evaluating Big Data Platforms Performance in the Domestic Electronic Power Industry)

  • 조치선;이난규;함유근
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.97-108
    • /
    • 2020
  • 국내 전력산업이 스마트 그리드화 되면서 이로 인해 발생하는 빅데이터를 활용하여 수요관리, 시설물관리, 대고객서비스 등을 위한 빅데이터 플랫폼들이 도입되고 있는 추세이다. 그러나 빅데이터 프로젝트의 속성상 실제로 빅데이터 플랫폼의 활용이 업무 프로세스 상에서 정착되기 위해서는 많은 시간과 업데이트가 필요하다. 따라서 기존에 알려져 있거나 이론적인 평가 방법으로는 초기 빅데이터 플랫폼의 성과를 평가하기는 적절하지 않다. 본 논문에서는 빅데이터의 규모, 다양성, 속도에 따른 정보의 완전성/충분성, 정보의 신뢰성/정확성, 정보의 적합성/관련성, 정보의 상세성/구체성, 정보의 비교가능성, 정보의 불편성, 정보의 적시성 등 특정 정보의 7 가지 품질 측면에서 전력산업에서 초기 빅데이터 플랫폼의 성과를 평가하는 방법론을 제시한다.

중소 전자상거래 판매상의 전략적 의사결정을 위한 비즈니스 인텔리전스 설계: 프로모션 전략을 중심으로 (Business Intelligence Design for Strategic Decision Making for Small and Midium-size E-Commerce Sellers: Focusing on Promotion Strategy)

  • 이성주;이용현;김진현;이강현;신광섭
    • 한국빅데이터학회지
    • /
    • 제8권2호
    • /
    • pp.201-222
    • /
    • 2023
  • 온라인 플랫폼을 통한 전자상거래 활성화에 따라 수많은 중소 판매상들은 수익성 향상을 위해 다양한 노력을 기울이고 있다. 이를 위해서는 프로모션이나 이벤트의 범위와 할인 수준, 품목 등에 대한 전략적 의사결정이 매우 중요하다. 본 연구는 중소 전자상거래 판매상들이 효과적인 프로모션 전략을 수립하기 위한 의사결정을 지원하기 위한 도구를 개발하고자 한다. 프로모션의 시행 여부를 판단하기 위해서는 프로모션에 의한 매출 증대 수준을 예측할 수 있어야 한다. 본 연구에서는 다양한 기계학습기법 중 MLP(Multi Layer Perceptron), Gradient Boosting Regression, Random Forest, Linear Regression 모델을 통해 프로모션 시행 후의 매출변화를 예측하기 위한 모델을 개발하였다. 프로모션 데이터가 가진 복잡성과 품목의 특성이 뚜렷한 영향력을 가지는 것으로 확인되었으며, 여러 기법 중 Random Forest 모델과 MLP 모델이 가장 성능이 좋은 것으로 나타났다. 본 연구에서 개발된 방법을 통해 중소 전자상거래 판매상이 시장 변화에 능동적으로 대응하고, 데이터 기반 의사결정을 지원할 수 있을 것이다.

신뢰성 빅데이터 플렛폼의 연구 (Study of Trust Bigdata Platform)

  • 김정준;곽광진;이돈희;이용수
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.225-230
    • /
    • 2016
  • 최근 네트워크와 인터넷의 발전으로 웹상에 대용량의 데이터가 생겨났으며, 이를 처리하기 위해 빅데이터 기술이라는 패러다임이 생겨났다. 빅데이터 기술은 기존의 정형 데이터뿐만 아니라 소셜 데이터 등 다양한 비정형 데이터를 이용해 다각적이고 정확한 분석을 목표로 연구되고 있다. 그러나 소셜 데이터는 전문성과 객관성을 가지고 있다고 보기는 힘들고 정보의 조작 및 은폐, 왜곡 등의 문제성이 제기되고 있다. 따라서, 본 논문에서는 신뢰성 빅데이터 플랫폼에 대하여 제안하며, 세부 관리자와 모듈에 대하여 설명한다. 본 논문에서 제안하는 신뢰성 빅데이터 플랫폼은 데이터 정제 관리자, 데이터 분석 관리자, 상호 신뢰 관리자, 시각화 관리자, 검색 관리자로 구성되어진다.

빅데이터 플랫폼에서 이종 서비스간 성능 간섭 현상 제어에 관한 연구 (Research of Performance Interference Control Technique for Heterogeneous Services in Bigdata Platform)

  • 진기성;이상민;김영균
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권6호
    • /
    • pp.284-289
    • /
    • 2016
  • Hadoop 기반의 빅데이터 분석 모델에서는 원시 데이터를 생산하는 응용계 시스템과 이를 분석하기 위한 분석계 시스템간의 데이터 이동이 불가피하다. 이에 따라, 응용 서비스와 분석 서비스를 하나의 플랫폼에서 동시에 지원할 수 있는 유니파이드 빅데이터 파일시스템 기술이 소개되고 있다. 그러나, 단일 플래폼 운영에 따른 경제성, 자원 효율성 등 다양한 측면에서의 장점에도 불구하고 현재 기술 수준에서는 응용 서비스와 분석 서비스의 상호 간섭에 의한 성능 저하 현상을 극복하는 것이 가장 큰 당면 과제로 남아있다. 본 논문에서는 이를 해결하기 위한 일차적 단계로 두 서비스에 대해 실서비스 수준 시뮬레이션을 통해 시스템 자원의 활용률, 워크로드 특성, 입출력 불균형의 세 가지 관점에서 관찰한 후 성능 간섭 문제의 근본적인 원인을 도출하였다. 또한 이를 해결하기 위한 방법으로 첫째, 데이터 서버의 입출력 경로를 분리하여 응용 서비스와 분석 서비스 각각 독립적인 입출력 계층을 구성하는 구조적인 해결책과, 둘째, 순차 읽기 특성을 가지는 분석 서비스 입출력 특성의 효과를 극대화하기 위한 선제적 미리 읽기 기법의 기술적 해결책을 제안한다. 한편, 논문에서 제안한 방법의 효과를 검증하기 위해 시뮬레이션과 동일한 방법의 시험을 기존 시스템과 제안한 시스템 각각에 대해 수행한 결과 기존 시스템 대비 우수한 성능을 확인할 수 있었다.

구글어스엔진 클라우드 컴퓨팅 플랫폼 기반 위성 빅데이터를 활용한 수재해 모니터링 연구 (Research of Water-related Disaster Monitoring Using Satellite Bigdata Based on Google Earth Engine Cloud Computing Platform)

  • 박종수;강기묵
    • 대한원격탐사학회지
    • /
    • 제38권6_3호
    • /
    • pp.1761-1775
    • /
    • 2022
  • 예측하기 힘든 기후변화로 인해 물 관련 재해의 발생 빈도와 피해 규모도 지속적으로 증가하는 추세이다. 재난관리의 측면에서 광범위한 지역의 피해면적을 파악하고, 중·장기적 예측을 위한 모니터링이 필수적이다. 수재해 분야에서 광역적 모니터링을 위해 Synthetic Aperture Radar (SAR) 위성영상을 활용한 원격탐사 기술 연구가 활발히 진행되고 있다. 수재해 모니터링을 위한 시계열 분석에는 방대한 양의 영상수집과 잡음이 많은 레이더 산란 특성을 고려한 복잡한 전처리과정이 필요하며, 이를 위해 상당한 시간이 소요되는 한계가 있다. 최근 클라우드 컴퓨팅 기술의 발전과 함께 위성 빅데이터를 활용한 시·공간 분석이 가능한 많은 플랫폼들이 제안되고 있다. 구글어스엔진(Google Earth Engine, GEE)은 대표적인 플랫폼으로, 600여개의 위성 자료를 무료로 제공하고 있으며 위성영상의 분석준비데이터를 기반으로 준-실시간 시·공간 분석이 가능하다. 이에 본 연구에서는 구글어스엔진을 활용한 즉각적인 수재해 피해 탐지와 중·장기적 시계열 관측 연구를 수행하였다. 변화탐지에 주로 활용되는 Otsu 기법을 통해 '20년 발생한 집중호우를 중심으로 하천 범람으로 인한 하폭의 변화와 피해 면적을 확인하였다. 또한 재난관리 측면에서 모니터링의 중요성이 요구되는 만큼 상습침수지역으로 선정된 연구대상 지역을 중심으로 '18년부터 '22년까지의 시계열 수체의 변화 경향을 확인하였다. 구글어스엔진은 자바스크립트 기반 코딩을 통한 짧은 처리시간, 시공간 분석과 표출의 강점으로 수재해 분야 활용이 가능할 것으로 판단된다. 더불어 향후 다양한 위성 빅데이터와의 연계를 통해 활용 분야가 확대될 것으로 기대된다.

An Open Medical Platform to Share Source Code and Various Pre-Trained Weights for Models to Use in Deep Learning Research

  • Sungchul Kim;Sungman Cho;Kyungjin Cho;Jiyeon Seo;Yujin Nam;Jooyoung Park;Kyuri Kim;Daeun Kim;Jeongeun Hwang;Jihye Yun;Miso Jang;Hyunna Lee;Namkug Kim
    • Korean Journal of Radiology
    • /
    • 제22권12호
    • /
    • pp.2073-2081
    • /
    • 2021
  • Deep learning-based applications have great potential to enhance the quality of medical services. The power of deep learning depends on open databases and innovation. Radiologists can act as important mediators between deep learning and medicine by simultaneously playing pioneering and gatekeeping roles. The application of deep learning technology in medicine is sometimes restricted by ethical or legal issues, including patient privacy and confidentiality, data ownership, and limitations in patient agreement. In this paper, we present an open platform, MI2RLNet, for sharing source code and various pre-trained weights for models to use in downstream tasks, including education, application, and transfer learning, to encourage deep learning research in radiology. In addition, we describe how to use this open platform in the GitHub environment. Our source code and models may contribute to further deep learning research in radiology, which may facilitate applications in medicine and healthcare, especially in medical imaging, in the near future. All code is available at https://github.com/mi2rl/MI2RLNet.

A Study on the Feasibility of IoT and AI-based elderly care system application

  • KANG, Minsoo;KIM, Baek Seob;SEO, Jin Won;KIM, Kyu Ho
    • 한국인공지능학회지
    • /
    • 제9권2호
    • /
    • pp.15-21
    • /
    • 2021
  • This paper conducted a feasibility study by applying an Internet of Things and Artificial intelligence-based management system for the elderly living alone in an aging society. The number of single-person families over the age of 50 is expected to increase, and problems such as health, safety, and loneliness may occur due to aging. Therefore, by establishing an IoT-based care system for the elderly living alone, a stable service was developed through securing a rapid response system for the elderly living alone and automatically reporting 119. The participants of the demonstration test were subjects under the jurisdiction of the "Seongnam Senior Complex," and the data collection rate between the IoT sensor and the emergency safety gateway was high. During the demonstration period, as a result of evaluating the satisfaction of the IoT-based care system for the elderly living alone, 90 points were achieved. We are currently in the COVID-19 situation. Therefore, the number of elderly living alone is continuously increasing, and the number of people who cannot benefit from care services will continue to occur. Also, even if the COVID-19 situation is over, the epidemic will happen again. So the care system is essential. The elderly care system developed in this way will provide safety management services based on artificial intelligence-based activity pattern analysis, improving the quality of in-house safety services.

Deep Learning-Based Smart Meter Wattage Prediction Analysis Platform

  • Jang, Seonghoon;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.173-178
    • /
    • 2020
  • As the fourth industrial revolution, in which people, objects, and information are connected as one, various fields such as smart energy, smart cities, artificial intelligence, the Internet of Things, unmanned cars, and robot industries are becoming the mainstream, drawing attention to big data. Among them, Smart Grid is a technology that maximizes energy efficiency by converging information and communication technologies into the power grid to establish a smart grid that can know electricity usage, supply volume, and power line conditions. Smart meters are equient that monitors and communicates power usage. We start with the goal of building a virtual smart grid and constructing a virtual environment in which real-time data is generated to accommodate large volumes of data that are small in capacity but regularly generated. A major role is given in creating a software/hardware architecture deployment environment suitable for the system for test operations. It is necessary to identify the advantages and disadvantages of the software according to the characteristics of the collected data and select sub-projects suitable for the purpose. The collected data was collected/loaded/processed/analyzed by the Hadoop ecosystem-based big data platform, and used to predict power demand through deep learning.