• Title/Summary/Keyword: Bigdata

Search Result 647, Processing Time 0.024 seconds

An Effect of AI Characteristics on the Intention to Continuous use the Chatbot Service (AI특성이 챗봇 서비스 지속사용의도에 미치는 영향)

  • Lee, Sae Bom;Park, Arum
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.203-204
    • /
    • 2020
  • 챗봇이란 인공지능 기반으로 인간과 대화하는 로봇을 일컬으며, 요청과 응답구조로 운영되는 인공지능 프로그램을 말한다. 챗봇은 사용자와 상호작용하기 위해 대화형 인터페이스를 사용하는 소프트웨어로 기존 사용자의 언어를 이해하고 학습하여 인간이 대화하듯이 대화를 하도록 설계되어있다. 챗봇을 사용하는 회사는 인건비를 줄이고 빅데이터를 기반으로 전문적이고 정확한 답변을 제공할 수 있어 활용 효율성이 높은 편이다. 그러나 회사가 챗봇을 적극적으로 도입하고 사용자에게 긍정적인 영향을 줄 것이라는 기대와 달리 사용자는 챗봇을 계속 사용하지 않고있다. 따라서 본 논문은 챗봇 서비스의 지속사용의도에 영향을 미치는 요인들을 파악하고자 한다. 특히 인공지능 특성이 챗봇 서비스 지속적 사용의도에 미치는 영향을 연구한다.

  • PDF

Detection of inappropriate advertising content on SNS using k-means clustering technique (k-평균 군집화 기법을 활용한 SNS의 부적절한 광고성 콘텐츠 탐지)

  • Lee, Dong-Hwan;Lim, Heui-Seok
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.570-573
    • /
    • 2021
  • 오늘날 SNS를 사용하는 사람들이 증가함에 따라, 생성되는 데이터도 많아지고 종류도 매우 다양해졌다. 하지만 유익한 정보만 존재하는 것이 아니라, 부정적, 반사회적, 사행성 등의 부적절한 콘텐츠가 공존한다. 때문에 사용자에 따라 적절한 콘텐츠를 필터링 할 필요성이 증가하고 있다. 따라서 본 연구에서는 SNS Instagram을 대상으로 콘텐츠의 해시태그를 수집하여 데이터화 했다. 또한 k-평균 군집화 기법을 적용하여, 유사한 특성의 콘텐츠들을 군집화하고, 각 군집은 실루엣 계수(Silhouette Coefficient)와 키워드 다양성(Keyword Diversity)을 계산하여 콘텐츠의 적절성을 판단하였다.

Bigdata Analysis on Keyword by Generations through Text Mining: Focused on Board of Nate Pann in 10s, 20s, 30s (텍스트 마이닝을 활용한 세대별 키워드 빅데이터 분석: 네이트판 10대·20대·30대 게시판을 중심으로)

  • Jeong, Baek;Bae, Sungwon;Hwangbo, Yujeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.513-516
    • /
    • 2022
  • 본 논문에서는 텍스트 마이닝 기법을 이용하여 MZ 세대를 이해하는 키워드를 도출하고자 한다. MZ 세대의 비중이 높아지면서, MZ 세대를 분석하려고 하는 많은 연구들이 수행되고 있다. 이에 본 연구에서는 MZ 세대를 이해하기 위하여 네이트 판의 연령별 게시판 크롤링을 통해 빅데이터를 수집하였다. 그리고 텍스트 마이닝 기법을 활용하여 10대, 20대, 30대의 각각의 키워드를 도출할 수 있었다. 본 논문에서 도출된 키워드는 이는 MZ 세대를 이해하는데 중요한 키워드로 볼 수 있을 것이다. 향후 연구로는 MZ 세대와 기성 세대를 비교하기 위하여 추가 크롤링을 통해 세대 간 비교 연구를 수행하고자 한다.

  • PDF

Design to Improve Educational Competency Using ChatGPT

  • Choong Hyong LEE
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.182-190
    • /
    • 2024
  • Various artificial intelligence neural network models that have emerged since 2014 enable the creation of new content beyond the existing level of information discrimination and withdrawal, and the recent generative artificial intelligences such as ChatGPT and Gall-E2 create and present new information similar to actual data, enabling natural interaction because they create and provide verbal expressions similar to humans, unlike existing chatbots that simply present input content or search results. This study aims to present a model that can improve the ChatGPT communication skills of university students through curriculum research on ChatGPT, which can be participated by students from all departments, including engineering, humanities, society, health, welfare, art, tourism, management, and liberal arts. It is intended to design a way to strengthen competitiveness to embody the practical ability to solve problems through ethical attitudes, AI-related technologies, data management, and composition processes as knowledge necessary to perform tasks in the artificial intelligence era, away from simple use capabilities. It is believed that through creative education methods, it is possible to improve university awareness in companies and to seek industry-academia self-reliant courses.

Prediction of Depression from Machine Learning Data (머신러닝 데이터의 우울증에 대한 예측)

  • Jeong Hee KIM;Kyung-A KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2023
  • The primary objective of this research is to utilize machine learning models to analyze factors tailored to each dataset for predicting mental health conditions. The study aims to develop appropriate models based on specific datasets, with the goal of accurately predicting mental health states through the analysis of distinct factors present in each dataset. This approach seeks to design more effective strategies for the prevention and intervention of depression, enhancing the quality of mental health services by providing personalized services tailored to individual circumstances. Overall, the research endeavors to advance the development of personalized mental health prediction models through data-driven factor analysis, contributing to the improvement of mental health services on an individualized basis.

Examining the Impact of Controversial Paid Advertisements by YouTubers on Consumer Boycott Intentions

  • Ming Wang;Jaewon Choi
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.109-123
    • /
    • 2023
  • This study investigates the impact of perceived risk, perceived deception, and negative emotional factors on consumer distrust, dissatisfaction, and boycott intentions towards both YouTubers and products that fail to adequately disclose paid advertisements, commonly referred to as "hidden advertisement." Conducted through an online survey, 306 YouTube viewers from South Korea participated in the study. The findings reveal several key insights. Firstly, perceived deception, perceived risk, and negative emotional factors are identified as contributors to increased consumer distrust and dissatisfaction. Secondly, both consumer distrust and dissatisfaction exhibit positive correlations with boycott intentions towards YouTubers and products. This research seeks to unravel the intricacies of online consumer boycott intentions and aims to elucidate the underlying reasons behind such actions. It is noteworthy that in this context, the ramifications of boycotts extend beyond influencers or YouTubers alone, impacting consumer distrust and dissatisfaction, thereby influencing boycott intentions towards the associated products and exerting a lasting impact on a company's branding efforts.

Food Image Classification using Deep Learning (딥러닝을 이용한 음식 이미지 분류 기술 개발)

  • Gagyeong Lee;Seyeon Im;Jini Yang;Minjung Yoo;Sunok Kim
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.133-140
    • /
    • 2023
  • This study was conducted with the aim of improving the food image classification model of a health care application targeting Koreans in their twenties. 546,194 images were collected from the Public Data Portal and AI Hub, and 175 food classes were constructed. The ResNet artificial intelligence model was trained and validated. Additionally, we deeply investigated the reasons for the relatively lower recognition accuracy of the actual food images, and we attempted various methods to optimize the model's performance as a solution.

Social Issue Risk Type Classification based on Social Bigdata (소셜 빅데이터 기반 사회적 이슈 리스크 유형 분류)

  • Oh, Hyo-Jung;An, Seung-Kwon;Kim, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.1-9
    • /
    • 2016
  • In accordance with the increased political and social utilization of social media, demands on online trend analysis and monitoring technologies based on social bigdata are also increasing rapidly. In this paper, we define 'risk' as issues which have probability of turn to negative public opinion among big social issues and classify their types in details. To define risk types, we conduct a complete survey on news documents and analyzed characteristics according to issue domains. We also investigate cross-medias analysis to find out how different public media and personalized social media. At the result, we define 58 risk types for 6 domains and developed automatic classification model based on machine learning algorithm. Based on empirical experiments, we prove the possibility of automatic detection for social issue risk in social media.

Real time predictive analytic system design and implementation using Bigdata-log (빅데이터 로그를 이용한 실시간 예측분석시스템 설계 및 구현)

  • Lee, Sang-jun;Lee, Dong-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1399-1410
    • /
    • 2015
  • Gartner is requiring companies to considerably change their survival paradigms insisting that companies need to understand and provide again the upcoming era of data competition. With the revealing of successful business cases through statistic algorithm-based predictive analytics, also, the conversion into preemptive countermeasure through predictive analysis from follow-up action through data analysis in the past is becoming a necessity of leading enterprises. This trend is influencing security analysis and log analysis and in reality, the cases regarding the application of the big data analysis framework to large-scale log analysis and intelligent and long-term security analysis are being reported file by file. But all the functions and techniques required for a big data log analysis system cannot be accommodated in a Hadoop-based big data platform, so independent platform-based big data log analysis products are still being provided to the market. This paper aims to suggest a framework, which is equipped with a real-time and non-real-time predictive analysis engine for these independent big data log analysis systems and can cope with cyber attack preemptively.

Analysis of Urban Traffic Network Structure based on ITS Big Data (ITS 빅데이터를 활용한 도시 교통네트워크 구조분석)

  • Kim, Yong Yeon;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2017
  • Intelligent transportation system (ITS) has been introduced to maximize the efficiency of operation and utilization of the urban traffic facilities and promote the safety and convenience of the users. With the expansion of ITS, various traffic big data such as road traffic situation, traffic volume, public transportation operation status, management situation, and public traffic use status have been increased exponentially. In this paper, we derive structural characteristics of urban traffic according to the vehicle flow by using big data network analysis. DSRC (Dedicated Short Range Communications) data is used to construct the traffic network. The results can help to understand the complex urban traffic characteristics more easily and provide basic research data for urban transportation plan such as road congestion resolution plan, road expansion plan, and bus line/interval plan in a city.

  • PDF