• 제목/요약/키워드: BigData Platform

Search Result 516, Processing Time 0.029 seconds

Convergence-Information Strategy between Big Data and Wearable Computing (빅데이터와 웨어러블 컴퓨팅의 융합정보화 전략)

  • Lee, Tae-Gyu;Shin, Seong-Yoon;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.218-220
    • /
    • 2014
  • Data economy era is rapidly approaching where big data plays the pivotal role of creating new values and solving various problems. This paper aims at designing Korea's new strategic direction of informatization in the big data age. For this purpose, paradigm shift of our society and the new role of IT together with the discussion on open platform and big data focused on its potentials and new possibilities are analyzed, which leads to the conclusion that big data will be a main engine for creating new values. Based on the results of the analysis, three kinds of strategic direction is designed. The first direction is on national vision making and 'data analysis-based creative nation' is suggested. The second direction is on catalyst making and 'smart government utilizing the power of big data' is proposed in details. The third direction is on sustainable leading mechanism and 'collaborative governance between stakeholders' is suggested.

  • PDF

Metaverse Platform Design for Strengthening Gender Sensitivity of MZ Generation

  • Kim, Sea Woo;Na, Eun Gyung
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.79-84
    • /
    • 2022
  • Due to a series of online sex crimes cases and online class conversions caused by the spread of the coronavirus, alternatives to sex education in schools are urgently required. As a result of this study, the metaverse sex education platform was designed. Using this platform, learners are expected to cultivate correct adult awareness and digital citizenship. Within the metaverse platform, learners can participate more actively in learning. Instead of exposing one's name and face in a place dealing with sensitive gender issues, one can participate in education through his or her decorated avatar and participate in education much more actively than face-to-face education and express one's opinion through chat. In addition, education by level can be received regardless of time and place, which can have the effect of bridging the educational gap between urban and rural areas. In this paper, we propose a new sex education platform without time and space constraints by utilizing metaverse.

Building an Analytical Platform of Big Data for Quality Inspection in the Dairy Industry: A Machine Learning Approach (유제품 산업의 품질검사를 위한 빅데이터 플랫폼 개발: 머신러닝 접근법)

  • Hwang, Hyunseok;Lee, Sangil;Kim, Sunghyun;Lee, Sangwon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.125-140
    • /
    • 2018
  • As one of the processes in the manufacturing industry, quality inspection inspects the intermediate products or final products to separate the good-quality goods that meet the quality management standard and the defective goods that do not. The manual inspection of quality in a mass production system may result in low consistency and efficiency. Therefore, the quality inspection of mass-produced products involves automatic checking and classifying by the machines in many processes. Although there are many preceding studies on improving or optimizing the process using the data generated in the production process, there have been many constraints with regard to actual implementation due to the technical limitations of processing a large volume of data in real time. The recent research studies on big data have improved the data processing technology and enabled collecting, processing, and analyzing process data in real time. This paper aims to propose the process and details of applying big data for quality inspection and examine the applicability of the proposed method to the dairy industry. We review the previous studies and propose a big data analysis procedure that is applicable to the manufacturing sector. To assess the feasibility of the proposed method, we applied two methods to one of the quality inspection processes in the dairy industry: convolutional neural network and random forest. We collected, processed, and analyzed the images of caps and straws in real time, and then determined whether the products were defective or not. The result confirmed that there was a drastic increase in classification accuracy compared to the quality inspection performed in the past.

Data Analysis Platform Construct of Fault Prediction and Diagnosis of RCP(Reactor Coolant Pump) (원자로 냉각재 펌프 고장예측진단을 위한 데이터 분석 플랫폼 구축)

  • Kim, Ju Sik;Jo, Sung Han;Jeoung, Rae Hyuck;Cho, Eun Ju;Na, Young Kyun;You, Ki Hyun
    • Journal of Information Technology Services
    • /
    • v.20 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • Reactor Coolant Pump (RCP) is core part of nuclear power plant to provide the forced circulation of reactor coolant for the removal of core heat. Properly monitoring vibration of RCP is a key activity of a successful predictive maintenance and can lead to a decrease in failure, optimization of machine performance, and a reduction of repair and maintenance costs. Here, we developed real-time RCP Vibration Analysis System (VAS) that web based platform using NoSQL DB (Mongo DB) to handle vibration data of RCP. In this paper, we explain how to implement digital signal process of vibration data from time domain to frequency domain using Fast Fourier transform and how to design NoSQL DB structure, how to implement web service using Java spring framework, JavaScript, High-Chart. We have implement various plot according to standard of the American Society of Mechanical Engineers (ASME) and it can show on web browser based on HTML 5. This data analysis platform shows a upgraded method to real-time analyze vibration data and easily uses without specialist. Furthermore to get better precision we have plan apply to additional machine learning technology.

Utilization and Prospect of Big Data Analysis of Sports Contents (스포츠콘텐츠의 빅데이터 분석 활용과 전망)

  • Kang, Seungae
    • Convergence Security Journal
    • /
    • v.19 no.1
    • /
    • pp.121-126
    • /
    • 2019
  • The big data utilization category in the sports field was mainly focused on the big data analysis to improve the competence of the athlete and the performance. Since then, 'big data technology' which collect and analyze more detailed and diverse data through the application of ICT technology such as IoT and AI has been applied. The use of big data of sports contents in future has value and possibility in the smart environment, but it is necessary to overcome the shortage and limitation of platform to manage and share sports contents. In order to solve such problems, it is important to change the perception of the companies or providers that provide sports contents and cultivate and secure professional personnel capable of providing sports contents. Also, it is necessary to implement policies to systematically manage and utilize big data poured from sports contents.

A Study on Prediction of Traffic Volume Using Road Management Big Data

  • Sung, Hongki;Chong, Kyusoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.589-594
    • /
    • 2015
  • In reflection of road expansion and increasing use rates, interest has blossomed in predicting driving environment. In addition, a gigantic scale of big data is applied to almost every area around the world. Recently, technology development is being promoted in the area of road traffic particularly for traffic information service and analysis system in utilization of big data. This study examines actual cases of road management systems and road information analysis technologies, home and abroad. Based on the result, the limitations of existing technologies and road management systems are analyzed. In this study, a development direction and expected effort of the prediction of road information are presented. This study also examines regression analysis about relationship between guide name and traffic volume. According to the development of driving environment prediction platform, it will be possible to serve more reliable road information and also it will make safe and smart road infrastructures.

Feature Selection Using Submodular Approach for Financial Big Data

  • Attigeri, Girija;Manohara Pai, M.M.;Pai, Radhika M.
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1306-1325
    • /
    • 2019
  • As the world is moving towards digitization, data is generated from various sources at a faster rate. It is getting humungous and is termed as big data. The financial sector is one domain which needs to leverage the big data being generated to identify financial risks, fraudulent activities, and so on. The design of predictive models for such financial big data is imperative for maintaining the health of the country's economics. Financial data has many features such as transaction history, repayment data, purchase data, investment data, and so on. The main problem in predictive algorithm is finding the right subset of representative features from which the predictive model can be constructed for a particular task. This paper proposes a correlation-based method using submodular optimization for selecting the optimum number of features and thereby, reducing the dimensions of the data for faster and better prediction. The important proposition is that the optimal feature subset should contain features having high correlation with the class label, but should not correlate with each other in the subset. Experiments are conducted to understand the effect of the various subsets on different classification algorithms for loan data. The IBM Bluemix BigData platform is used for experimentation along with the Spark notebook. The results indicate that the proposed approach achieves considerable accuracy with optimal subsets in significantly less execution time. The algorithm is also compared with the existing feature selection and extraction algorithms.

Implementation of a pet product recommendation system using big data (빅 데이터를 활용한 애완동물 상품 추천 시스템 구현)

  • Kim, Sam-Taek
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.19-24
    • /
    • 2020
  • Recently, due to the rapid increase of pets, there is a need for an integrated pet-related personalized product recommendation service such as feed recommendation using a health status check of pets and various collected data. This paper implements a product recommendation system that can perform various personalized services such as collection, pre-processing, analysis, and management of pet-related data using big data. First, the sensor information worn by pets, customer purchase patterns, and SNS information are collected and stored in a database, and a platform capable of customized personalized recommendation services such as feed production and pet health management is implemented using statistical analysis. The platform can provide information to customers by outputting similarity product information about the product to be analyzed and information, and finally outputting the result of recommendation analysis.

An Exploratory Study on the Management Framework of Social Media as Knowledge Creation Platform (지식 창조 플랫폼으로서의 소셜미디어 관리모델 설계를 위한 탐색 연구)

  • Kim, Sang Wook
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.149-158
    • /
    • 2012
  • Much attention is being paid to social media because of their potentials to draw collective intelligence. In this context does this study attempt to draw some implications of social media as knowledge creation platform and suggest a conceptual framework of social media management. Information sharing among the public through social media literally produces profound influence throughout the society and thus not only business firms but all levels of public institutions, including government are seeking to take its advantage for various purposes such as public relations, crowd sourcing, etc. Especially considering that social media open the possibility of social knowledge creation platform in the Big Data era, this study is perhaps able to contribute to further development of social media management model together with a series of measuring indexes.

AI Smart Factory Model for Integrated Management of Packaging Container Production Process

  • Kim, Chigon;Park, Deawoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • We propose the AI Smart Factory Model for integrated management of production processes in this paper .It is an integrated platform system for the production of food packaging containers, consisting of a platform system for the main producer, one or more production partner platform systems, and one or more raw material partner platform systems while each subsystem of the three systems consists of an integrated storage server platform that can be expanded infinitely with flexible systems that can extend client PCs and main servers according to size and integrated management of overall raw materials and production-related information. The hardware collects production site information in real time by using various equipment such as PLCs, on-site PCs, barcode printers, and wireless APs at the production site. MES and e-SCM data are stored in the cloud database server to ensure security and high availability of data, and accumulated as big data. It was built based on the project focused on dissemination and diffusion of the smart factory construction, advancement, and easy maintenance system promoted by the Ministry of SMEs and Startups to enhance the competitiveness of small and medium-sized enterprises (SMEs) manufacturing sites while we plan to propose this model in the paper to state funding projects for SMEs.