• Title/Summary/Keyword: Big-data investment

Search Result 149, Processing Time 0.023 seconds

A Study on Mode Choice of Trips to Sport Facilities Using SP Survey Data (SP조사자료를 활용한 스포츠시설 이용 수단선택에 관한 연구)

  • KIM, Joo Young;LEE, Seungjae;KIM, Jae-Young;PARK, Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.197-209
    • /
    • 2017
  • With the advent of age that people spend more time and money on leisure activities, there is increasing interest in professional sport games. The location of large scale sport facilities has substantial impacts on existing transportation pattern because the facility attracts and generates massive traffic volume within a short period of time. This study aims to develop a mode choice model of leisure trips of which the destinations are a sport facility. A structured SP (stated preference) survey questionnaires were developed through an experimental design, and professional sport spectators were asked to state their preference in the choice of transport mode to the sport facility. The survey results show that public transportation is preferred to passenger cars for their trip to big sports event, implying that the convenience of back home trip after the event is an important factor of their mode choice. This study is a rare research on the trip pattern to sports complex in Korea, which provides policy implications on the provision of mass transit including subway system to large scale sport complexes. And it is also expected that this study contributes to future researches on leisure trip pattern.

Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model (부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법)

  • Cho, Soo Hyun;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.307-332
    • /
    • 2022
  • One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.

A Study on Popular Sentiment for Generation MZ: Through social media (SNS) sentiment analysis (MZ세대에 대한 대중감성 연구: 소셜미디어(SNS) 감성 분석을 통해)

  • Myung-suk Ann
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.19-26
    • /
    • 2023
  • In this study, the public sensitivity of the 'MZ generation' was examined through the social media big data sensitivity analysis method. For the analysis, the consumer account SNS text was examined, and positive and negative emotional factors were presented by classifying external sensibilities and emotions of the MZ generation. In conclusion, the positive emotions of liking and interest in relation to the "MZ generation" were 72.1%, higher than the negative emotional ratio of 27.9%. In positive sensitivity, the older generation showed 'a favorable feeling for the individuality and dignifiedness of the MZ generation' and 'interest in the MZ generation with new values'. In contrast, the MZ generation has a favorable feeling for 'the fact that they are a generation of their own boldness, youthfulness and individuality' and 'small growthism'. Negative sensitivity outside the MZ generation was found to be 'A concern about the marriage avoidance, employment difficulties, debt investment, and resignation trends of the MZ generation', 'Hate the MZ generation who treats Kkondae' and 'Difficult to talk to the MZ generation'. On the other hand, the negative emotions felt by the MZ generation itself were 'Rejection of generalization', 'Rejection of generation and gender conflicts', 'Rejection of competition worse than the older generation', 'Relative failure of the rich era', and 'Sadness to live in a predicted climate disaster'. Therefore, the older generation should not look at the MZ generation in general, but as individuals, and should alleviate conflicts with intergenerational understanding and empathy. there is a need for community consideration to solve generational conflicts, gender conflicts, and environmental problems.

Comparing Corporate and Public ESG Perceptions Using Text Mining and ChatGPT Analysis: Based on Sustainability Reports and Social Media (텍스트마이닝과 ChatGPT 분석을 활용한 기업과 대중의 ESG 인식 비교: 지속가능경영보고서와 소셜미디어를 기반으로)

  • Jae-Hoon Choi;Sung-Byung Yang;Sang-Hyeak Yoon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.347-373
    • /
    • 2023
  • As the significance of ESG (Environmental, Social, and Governance) management amplifies in driving sustainable growth, this study delves into and compares ESG trends and interrelationships from both corporate and societal viewpoints. Employing a combination of Latent Dirichlet Allocation Topic Modeling (LDA) and Semantic Network Analysis, we analyzed sustainability reports alongside corresponding social media datasets. Additionally, an in-depth examination of social media content was conducted using Joint Sentiment Topic Modeling (JST), further enriched by Semantic Network Analysis (SNA). Complementing text mining analysis with the assistance of ChatGPT, this study identified 25 different ESG topics. It highlighted differences between companies aiming to avoid risks and build trust, and the general public's diverse concerns like investment options and working conditions. Key terms like 'greenwashing,' 'serious accidents,' and 'boycotts' show that many people doubt how companies handle ESG issues. The findings from this study set the foundation for a plan that serves key ESG groups, including businesses, government agencies, customers, and investors. This study also provide to guide the creation of more trustworthy and effective ESG strategies, helping to direct the discussion on ESG effectiveness.

An Analysis of IPA for the Improvement of University Start-up Support System: Focusing on the Case of the D University (대학 창업지원제도 개선방안 도출을 위한 IPA분석: D대학 사례를 중심으로)

  • Nam Jung-Min;You, Hyun-Kyung;Kim, Yun-Hee;Kang, Eun-Jeong;Lee, Hyun-Seok;Jang, Kyoung-Hwa;Kim, Su-Jin
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.2
    • /
    • pp.53-64
    • /
    • 2022
  • The purpose of this study is to analyze the difference in importance and performance of the university start-up support system focusing on D university students to grasp the perception of the start-up support system provided the university from the perspective of students who are real users. Through this, a plan for qualitative growth and advancement of the university start-up system was derived using the IPA (importance-performance analysis) analysis. The findings are as follows. The importance of all elements of university start-up education and start-up support system is higher than the performance, which means that the start-up education and support programs currently implemented by universities are recognized as important, but do not play a big role in terms of performance for students. In addition, the highest priority factors for improvement in the importance-performance matrix were funding and investment support, start-up space and facilities support, management advisory, patent and intellectual property support, and entrepreneurship field practice. Therefore, This study can be used as objective data to identify the factors that universities should focus on and establish a start-up support system from a long-term perspective, and to build and operate a start-up support system that reflects the needs of students.

Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China (인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로)

  • Lee, JaeWon;Oh, SangJin
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.71-90
    • /
    • 2020
  • Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using 'finance and technology' and 'finance and ecosystem' as keywords for companies. In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine. Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries. Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology. Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

The Study on the Influence of Selection Characteristics of Franchise System, business possibility, Communication, Moral Hazard on Franchisee's Perceived Risk, and Recontracting Intention in the Food Service Franchise Industry (외식 프랜차이저의 사업성, 커뮤니케이션, 모럴해저드가 프랜차이지의 위험지각과 재계약의도에 미치는 영향)

  • Yu, Jong-Pil;Lee, In-Ho
    • Journal of Distribution Research
    • /
    • v.16 no.1
    • /
    • pp.1-27
    • /
    • 2011
  • I. Introduction: This study is to examine the structural relationships among exogenous variable (preliminary and post-support, franchisee's perceived business possibility, communication, moral hazard), the mediated variables(satisfaction, perceived risk, trust) and dependent variable(recontracting intention) in the food service franchise industry context. More specifically, this study has considered some realistic characteristics factors influencing satisfaction, perceived risk and trust between franchisors and franchisees and their further recontracting intention from the perspective of a practical approach. In this study, 437 data has been collected and used for the SPSS and AMOS analysis. The data were analyzed with structural equation modeling. Since the result of the overall model analysis demonstrated a good fit, we could further analyze our data. II. Research Model: This study is to examine the structural relationships among preliminary and post-support by franchisor, franchisee's perceived business possibility, and communication, moral hazard, has on effect on franchisee's satisfaction, perceived risk, trust and recontracting intention in the food service franchise industry context. Hypotheses are as following (Stern & EL-Ansary 1988; Oliver, 1997;Kee & Knox, 1970; Moorman, Deshpande & Zaltman, 1993; Perron, 1998; Zaheer, McEvily, Perrone, 1998). III. Result and Implication: We examined franchisee who have food service stores for samples of this study. The data were analyzed with structural equation modeling using path analysis. The result of the overall model analysis appeared as following: ${\chi}^2$ = 61.578 (d.f.=9, p<0.01), CFI =.990, GFI =.973, AGFI =.863, RMR =.019, RMSEA= .116, NFI = .988, TLI = .959. The findings can be summarized as follows: First, preliminary and post support of franchisor, perceived business possibility and communication positively influence to franchisee's satisfaction. Second, moral hazard of franchisor has negatively influence to franchisee's satisfaction and positively influence to perceived risk. Third, franchisee's satisfaction and trust has positively influence to recontracting intention. Fourth, franchisee's perceived risk has negatively influence to trust and recontracting intention. We can concluded that franchisor's preliminary and post support of franchisor, perceived business possibility and communication may be considered as the important factors influence to franchisee's satisfaction. Moral hazard has become a focused issue in franchise industry. Finally, the managerial implication has been stated as followings: First, in the process of building a systematic industry support franchise system and developing a creative business model, franchisee's stable profitability should be considered as the first important factor. The franchisee's trust to franchise may become a dominant factor that influence the business expansion of franchisor. Second, franchisor should communication with their franchisees and deal with the realistic difficulties faced by them with an effort. Third, the franchisor should achieve a synergy effect by utilizing the win-win strategy. The moral hazard strategy that achieving the profit through franchisee's damage will not be inadvisable to franchisor. Then the long-term oriented development and profitability can be maintained. To do so, the franchise industry may break away from the traditional business structure to improve management transparency and competitiveness on investment and organizational changing management. The conflict between franchisor and franchisee also can be reduced and big success can be achieved in the franchise industry.

  • PDF

The Stock Portfolio Recommendation System based on the Correlation between the Stock Message Boards and the Stock Market (인터넷 주식 토론방 게시물과 주식시장의 상관관계 분석을 통한 투자 종목 선정 시스템)

  • Lee, Yun-Jung;Kim, Gun-Woo;Woo, Gyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.441-450
    • /
    • 2014
  • The stock market is constantly changing and sometimes the stock prices unaccountably plummet or surge. So, the stock market is recognized as a complex system and the change on the stock prices is unpredictable. Recently, many researchers try to understand the stock market as the network among individual stocks and to find a clue about the change of the stock prices from big data being created in real time from Internet. We focus on the correlation between the stock prices and the human interactions in Internet especially in the stock message boards. To uncover this correlation, we collected and investigated the articles concerning with 57 target companies, members of KOSPI200. From the analysis result, we found that there is no significant correlation between the stock prices and the article volume, but the strength of correlation between the article volume and the stock prices is relevant to the stock return. We propose a new method for recommending stock portfolio base on the result of our analysis. According to the simulated investment test using the article data from the stock message boards in 'Daum' portal site, the returns of our portfolio is about 1.55% per month, which is about 0.72% and 1.21% higher than that of the Markowitz's efficient portfolio and that of the KOSPI average respectively. Also, the case using the data from 'Naver' portal site, the stock returns of our proposed portfolio is about 0.90%, which is 0.35%, 0.40%, and 0.58% higher than those of our previous portfolio, Markowitz's efficient portfolio, and KOSPI average respectively. This study presents that collective human behavior on Internet stock message board can be much helpful to understand the stock market and the correlation between the stock price and the collective human behavior can be used to invest in stocks.

A study on the CRM strategy for medium and small industry of distribution (중소유통업체의 CRM 도입방안에 관한 연구)

  • Kim, Gi-Pyoung
    • Journal of Distribution Science
    • /
    • v.8 no.3
    • /
    • pp.37-47
    • /
    • 2010
  • CRM refers to the operating activities that always maintain and promote good relationship with customers to ultimately maximize the company's profits by understanding the value of customers to meet their demands, establishing a strategy which may maximize the Life Time Value and successfully operating the business by integrating the customer management processes. In our country, many big businesses are introducing CRM initiatively to use it in marketing strategy however, most medium and small sized companies do not understand CRM clearly or they feel difficult to introduce it due to huge investment needed. This study is intended to present CRM promotion strategy and activities plan fit for the medium and small sized companies by analyzing the success factors of the leading companies those have already executed CRM by surveying the precedents to make the distributors out of the industries have close relation with consumers to overcome their weakness in scale and strengthen their competitiveness in such a rapidly changing and fiercely competing market. There are 5 stages to build CRM such as the recognition of the needs of CRM establishment, the establishment of CRM integrated database, the establishment of customer analysis and marketing strategy through data mining, the practical use of customer analysis through data mining and the implementation of response analysis and close loop process. Through the case study of leading companies, CRM is needed in types of businesses where the companies constantly contact their customers. To meet their needs, they assertively analyze their customer information. Through this, they develop their own CRM programs personalized for their customers to provide high quality service products. For customers helping them make profits, the VIP marketing strategy is conducted to keep the customers from breaking their relationships with the companies. Through continuous management, CRM should be executed. In other words, through customer segmentation, the profitability for the customers should be maximized. The maximization of the profitability for the customers is the key to CRM. These are the success factors of the CRM of the distributors in Korea. Firstly, the top management's will power for CS management is needed. Secondly, the culture across the company should be made to respect the customers. Thirdly, specialized customer management and CRM workers should be trained. Fourthly, CRM behaviors should be developed for the whole staff members. Fifthly, CRM should be carried out through systematic cooperation between related departments. To make use of the case study for CRM, the company should understand the customer and establish customer management programs to set the optimal CRM strategy and continuously pursue it according to a long-term plan. For this, according to collected information and customer data, customers should be segmented and the responsive customer system should be designed according to the differentiated strategy according to the class of the customers. In terms of the future CRM, integrated CRM is essential where the customer information gathers together in one place. As the degree of customers' expectation increases a lot, the effective way to meet the customers' expectation should be pursued. As the IT technology improved rapidly, RFID (Radio Frequency Identification) appears. On a real-time basis, information about products and customers is obtained massively in a very short time. A strategy for successful CRM promotion should be improving the organizations in charge of contacting customers, re-planning the customer management processes and establishing the integrated system with the marketing strategy to keep good relation with the customers according to a long-term plan and a proper method suitable to the market conditions and run a company-wide program. In addition, a CRM program should be continuously improved and complemented to meet the company's characteristics. Especially, a strategy for successful CRM for the medium and small sized distributors should be as follows. First, they should change their existing recognition in CRM and keep in-depth care for the customers. Second, they should benchmark the techniques of CRM from the leading companies and find out success points to use. Third, they should seek some methods best suited for their particular conditions by achieving the ideas combining their own strong points with marketing. Fourth, a CRM model should be developed that will promote relationship with individual customers just like the precedents of small sized businesses in Switzerland through small but noticeable events.

  • PDF