• 제목/요약/키워드: Big-data Analysis

검색결과 3,421건 처리시간 0.033초

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권4호
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.

빅데이터 처리시간 감소와 저장 효율성이 향상을 위한 맵리듀스 기반 빅데이터 처리 기법 구현 (Implement of MapReduce-based Big Data Processing Scheme for Reducing Big Data Processing Delay Time and Store Data)

  • 이협건;김영운;김기영
    • 한국융합학회논문지
    • /
    • 제9권10호
    • /
    • pp.13-19
    • /
    • 2018
  • 맵리듀스는 하둡의 필수 핵심 기술로 하둡 분산 파일 시스템을 기반으로 빅데이터를 처리하는 가장 보편화되어 사용되고 있다. 그러나 기존 맵리듀스 기반 빅데이터 처리 기법은 하둡 분산 파일 시스템에 정해진 블록의 크기대로 파일 나눠 저장되는 특징으로 인해 인프라 자원의 낭비가 극심하다. 이에 본 논문에서는 효율적인 맵리듀스 기반 빅데이터 처리기법을 제안한다. 제안하는 기법은 처리할 데이터를 사전에 맵리듀스에서 처리하기 적합한 데이터 형태로 변환 및 압축하여 빅데이터 인프라 환경의 저장 효율성을 증가시킨다. 또한 제안하는 기법은 저장 효율성을 중점으로 구현했을 때 발생할 수 있는 데이터 처리 시간의 지연 문제를 해결한다.

디지털 덴탈 헬스케어 분야에서의 빅데이터 활용 전망에 대한 연구 (A study on the applications and prospects of big data in the field of digital dental healthcare)

  • 류재경;김남중;김소민;이선경
    • 대한치과기공학회지
    • /
    • 제46권2호
    • /
    • pp.42-48
    • /
    • 2024
  • Purpose: The purpose of this study is to investigate the applications and prospects of big data in digital dental healthcare. Methods: The study included 30 participants in the dental field (dentists, technicians, professors, and graduate students). From June 25 to 30, 2023, the contents of the study were thoroughly explained, consent was obtained from the research subjects, and a questionnaire was administered via an internet service. The questionnaires of 28 participants who responded completely were used for analysis. The collected data were statistically processed using IBM SPSS Statistics ver. 22.0 (IBM). Results: The use of big data in digital dental healthcare, digital dental health system, mobile dental health, dental health analysis, and telehealthcare were all heavily surveyed, with an average score of 3.97 or higher on a 5-point Likert scale. The areas where big data can be utilized in digital dental healthcare are as follows. The utilization rate for three-dimensional digital product development via linkage with big data systems and industrial field manufacturing technology was found to be 4.11±0.67, and the analysis of trends by age in the occurrence of various oral diseases was found to be 4.00±0.98. Conclusion: In the future, research into the viability of big data's success in the medical data field, which is directly related to human life, is needed. Additionally, social policies and regulations regarding big data-related information and standards in dental healthcare are necessary.

공간 빅데이터를 위한 동태적 시각화 모형의 개발과 적용 (Development and Application of Dynamic Visualization Model for Spatial Big Data)

  • 김동한;김다윗
    • 한국지리정보학회지
    • /
    • 제21권1호
    • /
    • pp.57-70
    • /
    • 2018
  • 빅데이터 시대로 진입하게 되면서 전 세계적으로 생산 및 공유되어지는 무수한 양의 데이터를 활용하고자 하는 노력이 곳곳에서 이루어지고 있다. 특히, 이러한 데이터와 발전된 기술을 통해 국토와 도시 공간에서 일어나는 현상들을 분석함으로써 기존의 전통적 방식에서 보여주지 못하던 새로운 정보를 제공 할 수 있는 가능성과 이에 대한 기대가 커지고 있다. 따라서 기존의 틀을 넘어서는 정보의 구득 방식, 활용 및 전달을 위한 과학적이고 효과적인 방법과 수단이 필요하며 이를 공공의 의사결정의 지원수단으로 활용하려는 노력도 함께 요구된다. 이 연구는 국토도시계획지원(planning support)의 한 수단으로 공간 빅데이터의 동태적 시각화 모형의 개발과 실증적용에 주요한 목적을 두고 수행하였다. 주요한 내용은 다음과 같다. 첫째, 데이터 시각화의 개념과 의미와 함께 계획지원 또는 의사결정에서의 공간 빅데이터 시각화의 적용이 가지는 효용성을 살펴보고 시사점을 고찰하였다. 둘째, 공간 빅데이터 동태적 시각화 모형을 개발하고, 제주도를 대상으로 실증적용을 수행하였다. 도시 공간의 현황 파악과 문제 해결을 지원하기 위한 데이터의 시각화 자체는 새로운 것은 아니다. 그러나 빅데이터와 새로운 시각화 툴을 활용할 경우 기존의 방식과는 차별되는 결과를 도출할 수 있다. 본 연구는 위와 같은 내용을 바탕으로 향후 계획지원을 위한 데이터 시각화의 활용성을 체계적으로 검토하고, 이를 확대하기 위한 방안을 구축하는데 필요한 시사점을 제시하였다.

혁신확산이론 기반 소비자 행위의도에 관한 메타분석 (A Meta Analysis of Innovation Diffusion Theory based on Behavioral Intention of Consumer)

  • 남수태;김도관;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.140-141
    • /
    • 2017
  • 빅데이터 분석은 데이터 저장소에 저장된 대용량 데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 또한 빅데이터 분석은 소셜 빅데이터, 실시간 사물지능통신(M2M; Machine to Machine), 센서 데이터, 기업 고객관계 데이터 등 도처에 존재하는 다양한 성격의 빅데이터를 효과적으로 분석하는 것을 말한다. 빅데이터 시대에는 단순히 데이터 베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 폭발적으로 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 빅데이터를 효과적으로 분석하는 것이 무엇보다 중요해졌다. 그런데 메타분석은 여러 실증연구의 정량적인 결과를 통합과 분석을 통해 전체 결과를 조망할 기회를 제공하는 통계적 통합 방법이다. 따라서 본 연구는 우리나라에서 2000년-2017년 사이 혁신확산이론 모델을 기반으로 한 주제로 출판된 연구 50개 논문 750개 샘플을 대상으로 하였다.

  • PDF

A Study on the Meaning of The First Slam Dunk Based on Text Mining and Semantic Network Analysis

  • Kyung-Won Byun
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.164-172
    • /
    • 2023
  • In this study, we identify the recognition of 'The First Slam Dunk', which is gaining popularity as a sports-based cartoon through big data analysis of social media channels, and provide basic data for the development and development of various contents in the sports industry. Social media channels collected detailed social big data from news provided on Naver and Google sites. Data were collected from January 1, 2023 to February 15, 2023, referring to the release date of 'The First Slam Dunk' in Korea. The collected data were 2,106 Naver news data, and 1,019 Google news data were collected. TF and TF-IDF were analyzed through text mining for these data. Through this, semantic network analysis was conducted for 60 keywords. Big data analysis programs such as Textom and UCINET were used for social big data analysis, and NetDraw was used for visualization. As a result of the study, the keyword with the high frequency in relation to the subject in consideration of TF and TF-IDF appeared 4,079 times as 'The First Slam Dunk' was the keyword with the high frequency among the frequent keywords. Next are 'Slam Dunk', 'Movie', 'Premiere', 'Animation', 'Audience', and 'Box-Office'. Based on these results, 60 high-frequency appearing keywords were extracted. After that, semantic metrics and centrality analysis were conducted. Finally, a total of 6 clusters(competing movie, cartoon, passion, premiere, attention, Box-Office) were formed through CONCOR analysis. Based on this analysis of the semantic network of 'The First Slam Dunk', basic data on the development plan of sports content were provided.

Big Data Analysis of Weather Condition and Air Quality on Cosmetics Marketing

  • Wang, Zebin;Wu, Tong;Zhao, Xinshuang;Cheng, Shuchun;Dai, Genghui;Dai, Weihui
    • Journal of Information Technology Applications and Management
    • /
    • 제24권3호
    • /
    • pp.93-105
    • /
    • 2017
  • Demands of cosmetics are affected not only by the well-known elements such as brand, price, and customer's consumption capacity, but also by some latent factors, for example, weather and air environment. Due to complexity and dynamic changes of the above factors, their influences can hardly be estimated in an accurate way by the traditional approaches such as survey and questionnaires. Through modeling and statistical analysis of big data, this article studied the impacts of weather condition and air quality on customer flow and sales of the cosmetics distributors in China, and found several hidden influencing factors. It provided a big-data based method for the analysis of unconventional factors on cosmetics marketing in the changing weather condition and air environment.

Cloud Computing Platforms for Big Data Adoption and Analytics

  • Hussain, Mohammad Jabed;Alsadie, Deafallah
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.290-296
    • /
    • 2022
  • Big Data is a data analysis technology empowered by late advances in innovations and engineering. In any case, big data involves a colossal responsibility of equipment and handling assets, making reception expenses of big data innovation restrictive to little and medium estimated organizations. Cloud computing offers the guarantee of big data execution to little and medium measured organizations. Big Data preparing is performed through a programming worldview known as MapReduce. Normally, execution of the MapReduce worldview requires organized joined stockpiling and equal preparing. The computing needs of MapReduce writing computer programs are frequently past what little and medium measured business can submit. Cloud computing is on-request network admittance to computing assets, given by an external element. Normal arrangement models for cloud computing incorporate platform as a service (PaaS), software as a service (SaaS), framework as a service (IaaS), and equipment as a service (HaaS).

라즈베리파이 보드 기반의 빅데이터 분석을 위한 학습 시스템 (Learning System for Big Data Analysis based on the Raspberry Pi Board)

  • 김영근;조민희;김원중
    • 한국전자통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.433-440
    • /
    • 2016
  • 최근 IT분야에서 화두가 되고 있는 빅데이터 처리를 위한 시스템 환경의 구축을 위해서는 다수의 컴퓨터를 네트워크 장비를 통해 연결하여 노드를 구성하거나, 하나의 컴퓨터에 다수의 가상 호스트를 통한 클라우딩 환경을 구축하여야 한다. 그러나 이러한 빅데이터 분석 시스템을 구축하는 것은 복잡한 시스템 구성과 비용적인 측면에서 많은 제약이 따른다. 이러한 제약은 중요한 국가 경쟁력의 하나로 부각되고 있는 빅데이터 전문 인력 양성에 큰 걸림돌이 되고 있다. 이에 본 연구에서는 빅데이터 분야의 인력 양성을 위한 교육현장에서 저렴한 가격으로 실용적인 교육이 가능한 라즈베리파이 보드 기반의 교육용 빅데이터 분석 시스템을 제안하였다.

Similarity Measure Design on High Dimensional Data

  • Nipon, Theera-Umpon;Lee, Sanghyuk
    • 한국융합학회논문지
    • /
    • 제4권1호
    • /
    • pp.43-48
    • /
    • 2013
  • Designing of similarity on high dimensional data was done. Similarity measure between high dimensional data was considered by analysing neighbor information with respect to data sets. Obtained result could be applied to big data, because big data has multiple characteristics compared to simple data set. Definitely, analysis of high dimensional data could be the pre-study of big data. High dimensional data analysis was also compared with the conventional similarity. Traditional similarity measure on overlapped data was illustrated, and application to non-overlapped data was carried out. Its usefulness was proved by way of mathematical proof, and verified by calculation of similarity for artificial data example.