• Title/Summary/Keyword: Big data analytics

Search Result 287, Processing Time 0.021 seconds

Research Trend Analysis by using Text-Mining Techniques on the Convergence Studies of AI and Healthcare Technologies (텍스트 마이닝 기법을 활용한 인공지능과 헬스케어 융·복합 분야 연구동향 분석)

  • Yoon, Jee-Eun;Suh, Chang-Jin
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.123-141
    • /
    • 2019
  • The goal of this study is to review the major research trend on the convergence studies of AI and healthcare technologies. For the study, 15,260 English articles on AI and healthcare related topics were collected from Scopus for 55 years from 1963, and text mining techniques were conducted. As a result, seven key research topics were defined : "AI for Clinical Decision Support System (CDSS)", "AI for Medical Image", "Internet of Healthcare Things (IoHT)", "Big Data Analytics in Healthcare", "Medical Robotics", "Blockchain in Healthcare", and "Evidence Based Medicine (EBM)". The result of this study can be utilized to set up and develop the appropriate healthcare R&D strategies for the researchers and government. In this study, text mining techniques such as Text Analysis, Frequency Analysis, Topic Modeling on LDA (Latent Dirichlet Allocation), Word Cloud, and Ego Network Analysis were conducted.

Digital Health in Southeast Asia: Startups and Digital Technology Applications

  • Hoe, Siu Loon
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.2
    • /
    • pp.183-201
    • /
    • 2022
  • The purpose of this article is to provide preliminary findings on the state of digital technology applications of startups in Southeast Asia and to discuss issues related to digital health adoption in the region. This exploratory study is based on an empirical analysis of startups and digital technology applications information from various publicly available website databases. Public and private organizations would benefit from a better understanding of the current state of digital technology applications provided by startups and the challenges faced in digital health adoption. This article contributes to the existing literature by offering an overview of startups and digital technology applications in the digital health space in the fast-growing region of Southeast Asia. It offers advice to organizations intending to pursue healthtech initiatives on the types of health services provided by startups and issues that need to be addressed to increase the adoption rate.

IoT based real time agriculture farming

  • Mateen, Ahmed;Zhu, Qingsheng;Afsar, Salman
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2019
  • The Internet of things (IOT) is remodeling the agribusiness empowering the agriculturists through the extensive range of strategies, for example, accuracy as well as practical farming to deal with challenges in the field. The paper aims making use of evolving technology i.e. IoT and smart agriculture using automation. The objective of this research paper to present tools and best practices for understanding the role of information and communication technologies in agriculture sector, motivate and make the illiterate farmers to understand the best insights given by the big data analytics using machine learning. The methodology used in this system can monitor the humidity, moisture level and can even detect motions. According to the data received from all the sensors the water pump, cutter and sprayer get automatically activated or deactivated. we investigate a remote monitoring system using Wi-Fi. These nodes send data wirelessly to a central server, which collects the data, stores it and will allow it to be analyzed then displayed as needed and can also be sent to the client mobile.

Practical Text Mining for Trend Analysis: Ontology to visualization in Aerospace Technology

  • Kim, Yoosin;Ju, Yeonjin;Hong, SeongGwan;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4133-4145
    • /
    • 2017
  • Advances in science and technology are driving us to the better life but also forcing us to make more investment at the same time. Therefore, the government has provided the investment to carry on the promising futuristic technology successfully. Indeed, a lot of resources from the government have supported into the science and technology R&D projects for several decades. However, the performance of the public investments remains unclear in many ways, so thus it is required that planning and evaluation about the new investment should be on data driven decision with fact based evidence. In this regard, the government wanted to know the trend and issue of the science and technology with evidences, and has accumulated an amount of database about the science and technology such as research papers, patents, project reports, and R&D information. Nowadays, the database is supporting to various activities such as planning policy, budget allocation, and investment evaluation for the science and technology but the information quality is not reached to the expectation because of limitations of text mining to drill out the information from the unstructured data like the reports and papers. To solve the problem, this study proposes a practical text mining methodology for the science and technology trend analysis, in case of aerospace technology, and conduct text mining methods such as ontology development, topic analysis, network analysis and their visualization.

Design and Implementation of Big Data Analytics Framework for Disaster Risk Assessment (빅데이터 기반 재난 재해 위험도 분석 프레임워크 설계 및 구현)

  • Chai, Su-seong;Jang, Sun Yeon;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.771-777
    • /
    • 2018
  • This study proposes a big data based risk analysis framework to analyze more comprehensive disaster risk and vulnerability. We introduce a distributed and parallel framework that allows large volumes of data to be processed in a short time by using open-source disaster risk assessment tool. A performance analysis of the proposed system presents that it achieves a more faster processing time than that of the existing system and it will be possible to respond promptly to precise prediction and contribute to providing guideline to disaster countermeasures. Proposed system is able to support accurate risk prediction and mitigate severe damage, therefore will be crucial to giving decision makers or experts to prepare for emergency or disaster situation, and minimizing large scale damage to a region.

Recent Research Trend Analysis for the Journal of Society of Korea Industrial and Systems Engineering Using Topic Modeling (토픽모델링을 활용한 한국산업경영시스템학회지의 최근 연구주제 분석)

  • Dong Joon Park;Pyung Hoi Koo;Hyung Sool Oh;Min Yoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.170-185
    • /
    • 2023
  • The advent of big data has brought about the need for analytics. Natural language processing (NLP), a field of big data, has received a lot of attention. Topic modeling among NLP is widely applied to identify key topics in various academic journals. The Korean Society of Industrial and Systems Engineering (KSIE) has published academic journals since 1978. To enhance its status, it is imperative to recognize the diversity of research domains. We have already discovered eight major research topics for papers published by KSIE from 1978 to 1999. As a follow-up study, we aim to identify major topics of research papers published in KSIE from 2000 to 2022. We performed topic modeling on 1,742 research papers during this period by using LDA and BERTopic which has recently attracted attention. BERTopic outperformed LDA by providing a set of coherent topic keywords that can effectively distinguish 36 topics found out this study. In terms of visualization techniques, pyLDAvis presented better two-dimensional scatter plots for the intertopic distance map than BERTopic. However, BERTopic provided much more diverse visualization methods to explore the relevance of 36 topics. BERTopic was also able to classify hot and cold topics by presenting 'topic over time' graphs that can identify topic trends over time.

The Correlation between Social Media and the Behaviors of the Supreme Court in Korea (소셜미디어와 대법원 판결의 상관 관계에 대한 분석)

  • Heo, Junhong;Seo, Yeeun;Lee, Seoyeong;Lee, Sang-Yong Tom
    • Knowledge Management Research
    • /
    • v.22 no.3
    • /
    • pp.31-53
    • /
    • 2021
  • As a communication channel for individuals, social media is affecting various areas such as business, economy, politics, and society. One of the less-studied areas is the law. Therefore, this study collected various information from social media and analyzed its impacts on the legal decisions, especially the Supreme Court decisions in Korea. This study was conducted by compiling information from Internet news articles and public responses. We found that when the negative reactions from the public got higher, the trial duration until the supreme court making the final decisions became shorter. However, we were not able to find the significant relationship between social media reactions and dismissal of appeal nor annulment. Our study would contribute to the information systems and knowledge management research in a sense that the social analytics is applied to the area of legal decisions, instead of using conventional qualitative study methodology. Our study is also meaningful to the practitioners because that big data analytical business can be applied to the field of law by creating a new database for the emerging legal technology. Finally, law makers can think of a better way to standardize the legal decision process to minimize the reverse effects from social media.

The Effect of Text Consistency between the Review Title and Content on Review Helpfulness (온라인 리뷰의 제목과 내용의 일치성이 리뷰 유용성에 미치는 영향)

  • Li, Qinglong;Kim, Jaekyeong
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.193-212
    • /
    • 2022
  • Many studies have proposed several factors that affect review helpfulness. Previous studies have investigated the effect of quantitative factors (e.g., star ratings) and affective factors (e.g., sentiment scores) on review helpfulness. Online reviews contain titles and contents, but existing studies focus on the review content. However, there is a limitation to investigating the factors that affect review helpfulness based on the review content without considering the review title. However, previous studies independently investigated the effect of review content and title on review helpfulness. However, it may ignore the potential impact of similarity between review titles and content on review helpfulness. This study used text consistency between review titles and content affect review helpfulness based on the mere exposure effect theory. We also considered the role of information clearness, review length, and source reliability. The results show that text consistency between the review title and the content negatively affects the review helpfulness. Furthermore, we found that information clearness and source reliability weaken the negative effects of text consistency on review helpfulness.

Developing a deep learning-based recommendation model using online reviews for predicting consumer preferences: Evidence from the restaurant industry (딥러닝 기반 온라인 리뷰를 활용한 추천 모델 개발: 레스토랑 산업을 중심으로)

  • Dongeon Kim;Dongsoo Jang;Jinzhe Yan;Jiaen Li
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.31-49
    • /
    • 2023
  • With the growth of the food-catering industry, consumer preferences and the number of dine-in restaurants are gradually increasing. Thus, personalized recommendation services are required to select a restaurant suitable for consumer preferences. Previous studies have used questionnaires and star-rating approaches, which do not effectively depict consumer preferences. Online reviews are the most essential sources of information in this regard. However, previous studies have aggregated online reviews into long documents, and traditional machine-learning methods have been applied to these to extract semantic representations; however, such approaches fail to consider the surrounding word or context. Therefore, this study proposes a novel review textual-based restaurant recommendation model (RT-RRM) that uses deep learning to effectively extract consumer preferences from online reviews. The proposed model concatenates consumer-restaurant interactions with the extracted high-level semantic representations and predicts consumer preferences accurately and effectively. Experiments on real-world datasets show that the proposed model exhibits excellent recommendation performance compared with several baseline models.

Service Quality Evaluation based on Social Media Analytics: Focused on Airline Industry (소셜미디어 어낼리틱스 기반 서비스품질 평가: 항공산업을 중심으로)

  • Myoung-Ki Han;Byounggu Choi
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.157-181
    • /
    • 2022
  • As competition in the airline industry intensifies, effective airline service quality evaluation has become one of the main challenges. In particular, as big data analytics has been touted as a new research paradigm, new research on service quality measurement using online review analysis has been attempted. However, these studies do not use review titles for analysis, relyon supervised learning that requires a lot of human intervention in learning, and do not consider airline characteristics in classifying service quality dimensions.To overcome the limitations of existing studies, this study attempts to measure airlines service quality and to classify it into the AIRQUAL service quality dimension using online review text as well as title based on self-trainingand sentiment analysis. The results show the way of effective extracting service quality dimensions of AIRQUAL from online reviews, and find that each service quality dimension have a significant effect on service satisfaction. Furthermore, the effect of review title on service satisfaction is also found to be significant. This study sheds new light on service quality measurement in airline industry by using an advanced analytical approach to analyze effects of service quality on customer satisfaction. This study also helps managers who want to improve customer satisfaction by providing high quality service in airline industry.