• Title/Summary/Keyword: Big Data Success

Search Result 114, Processing Time 0.019 seconds

A Study on the Success Model for the Establishment of Big Data System in Public Institutions (공공기관 빅데이터 시스템 구축을 위한 성공모형에 관한 연구)

  • Lee, Gwang-Su;Kwon, Jungin
    • Journal of Digital Convergence
    • /
    • v.20 no.1
    • /
    • pp.129-139
    • /
    • 2022
  • This study aims to identify which factors affect successful big data system construction, identify the relationship between the factors, and identify the success model and success factors necessary for public institutions to build big data systems. Therefore, the preceding and related studies related to this study were reviewed, and success factors for the establishment of a big data system were derived based on this. As a research method, a survey was conducted on users of institutions that have established or planned to build a big data system, and a structural equation (AMOS) was conducted to verify the impact relationship between success factors. As a result of the analysis, organizational support factors, development support factors, user support factors, information quality, service quality, system quality, use, and net benefit were derived as success factors for building big data systems, and a success model was presented. This can be seen as significant and academic contributions in that it is the first study of the success model for building an information system reflecting big data characteristics, and it is expected that this study will be used as basic data for building a big data system in public institutions in the future.

Analysis of Success Factors of OTT Original Contents Through BigData, Netflix's 'Squid Game Season 2' Proposal (빅데이터를 통한 OTT 오리지널 콘텐츠의 성공요인 분석, 넷플릭스의 '오징어게임 시즌2' 제언)

  • Ahn, Sunghun;Jung, JaeWoo;Oh, Sejong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • This study analyzes the success factors of OTT original content through big data, and intends to suggest scenarios, casting, fun, and moving elements when producing the next work. In addition, I would like to offer suggestions for the success of 'Squid Game Season 2'. The success factor of 'Squid Game' through big data is first, it is a simple psychological experimental game. Second, it is a retro strategy. Third, modern visual beauty and color. Fourth, it is simple aesthetics. Fifth, it is the platform of OTT Netflix. Sixth, Netflix's video recommendation algorithm. Seventh, it induced Binge-Watch. Lastly, it can be said that the consensus was high as it was related to the time to think about 'death' and 'money' in a pandemic situation. The suggestions for 'Squid Game Season 2' are as follows. First, it is a fusion of famous traditional games of each country. Second, it is an AI-based planned MD product production and sales strategy. Third, it is casting based on artificial intelligence big data. Fourth, secondary copyright and copyright sales strategy. The limitations of this study were analyzed only through external data. Data inside the Netflix platform was not utilized. In this study, if AI big data is used not only in the OTT field but also in entertainment and film companies, it will be possible to discover better business models and generate stable profits.

An Empirical Study on the Effects of Top Management Leadership for Big Data Success (빅데이터 성공에 최고경영층 리더십이 미치는 영향: 실증연구)

  • Park, Sohyun;Koo, Bonjae;Lee, Kukhie
    • Information Systems Review
    • /
    • v.18 no.2
    • /
    • pp.39-57
    • /
    • 2016
  • Previous studies on the success factors of big data implementation have called for future research and further examination of the top management leadership's impact. This research proposes and empirically tests three hypotheses, including how top management leadership can directly affect big data investment, how it can mediate the causal relationship between big data investment and idea usefulness, and how it can mediate the relationship between idea usefulness and business utilization. Based on the data collected from 108 big data users in Korean companies, we determined that all three hypotheses are statistically significant. By shedding light on top management leadership and its characteristics, we can provide better suggestions on what needs to be done to ensure the success of big data.

A Study on the Development of Indicator for the Level Diagnosis of Big Data-Utilizing companies (기업의 빅데이터 활용 수준 진단지표 개발 연구)

  • Chu, Donggyun;Han, Changhee
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.1
    • /
    • pp.53-67
    • /
    • 2014
  • In recent years, more data is being generated for the activation of the SNS, the spread of Smartphones and the development of IT technology. Therefore, it is to collect large amounts of data, analyze and ensure meaningful information has become important. The use of these data are formed on the global trend. Big data so-called, has attracted attention as a source of new business. Big Data can then give us the opportunity to be able to create a new customer and diversify the business. So, many companies have investment and effort for big data utilization. However, technology, infrastructure, human resources is different for each of the companies. Therefore, it is necessary to diagnose the level of big data utilization companies. In this study, through a literature review of existing, we derived the success factors for the big data utilization. And developed a diagnostic indicator that allows success factors derived, can be used to determine levels of big data utilization of the company. In addition, as a development of diagnostic indicators, were carried out case studies to diagnose company. Through this study, it will be an opportunity to be able to be reflected in the strategy of big data utilization company.

A study on the success factors of Big Data through an analysis of introduction effect of Big Data (빅데이터 도입 효과 분석을 통한 빅데이터 성공요인에 관한 연구)

  • Jung, Young-Ki;Suk, Myung-Gun;Kim, Chang-Jae
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.241-248
    • /
    • 2014
  • It has been expanded the bandwidth of data usages due to the rapid developments of information technology and infra hardware and then it was proposed to new paradigm of Big Data era. It has a trend to increase a Big Data technology and its performance gradually, thus enterprises have realized the importance of Data and the movement to take advantage of Big Data becomes active. This study has been performed to verify the importance through select the factors in order to active adoption of Big Data technology and utilization when enterprises use Big Data. It was selected that Big Data characteristic factors are the natures of predictability, manageability, affordability, competitiveness, creativity, responsiveness and supportability on the study. It is verified and showed that manageability were influenced to introduce Big Data in order, at the result of survey and statistics for enterprise practitioners who have big data experience.

A Study on the Necessary Factors to Establish for Public Institutions Big Data System (공공기관 빅데이터 시스템 구축 시 고려해야 할 측정항목에 관한 연구)

  • Lee, Gwang-Su;Kwon, Jungin
    • Journal of Digital Convergence
    • /
    • v.19 no.10
    • /
    • pp.143-149
    • /
    • 2021
  • As the need to establish a big data system for rapid provision of big data and efficient management of resources has emerged due to rapid entry into the hyper-connected intelligence information society, public institutions are pushing to establish a big data system. Therefore, this study analyzed and combined the success factors of big data-related studies and the specific aspects of big data in public institutions based on the measurement of environmental factors for establishing an integrated information system for higher education institutions. In addition, 19 measurement items reflecting big data characteristics were derived from big data experts using brainstorming and Delphi methods, and a plan to successfully apply them to public institutions that want to build big data systems was proposed. We hope that this research results will be used as a foundation for the successful establishment of big data systems in public institutions.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

An Empirical Study on the Effects of Source Data Quality on the Usefulness and Utilization of Big Data Analytics Results (원천 데이터 품질이 빅데이터 분석결과의 유용성과 활용도에 미치는 영향)

  • Park, Sohyun;Lee, Kukhie;Lee, Ayeon
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.4
    • /
    • pp.197-214
    • /
    • 2017
  • This study sheds light on the source data quality in big data systems. Previous studies about big data success have called for future research and further examination of the quality factors and the importance of source data. This study extracted the quality factors of source data from the user's viewpoint and empirically tested the effects of source data quality on the usefulness and utilization of big data analytics results. Based on the previous researches and focus group evaluation, four quality factors have been established such as accuracy, completeness, timeliness and consistency. After setting up 11 hypotheses on how the quality of the source data contributes to the usefulness, utilization, and ongoing use of the big data analytics results, e-mail survey was conducted at a level of independent department using big data in domestic firms. The results of the hypothetical review identified the characteristics and impact of the source data quality in the big data systems and drew some meaningful findings about big data characteristics.

The study of the restaurant start-up chatbot system using big data

  • Sung-woo Park;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.52-57
    • /
    • 2023
  • In the restaurant industry, along with the fourth industry, there is a food technology craze due to IT development. In addition, many prospective restaurant founders are increasing due to restaurant start-ups with relatively low entry barriers. And ChatGPT is causing a craze for chatbots. Therefore, the purpose of this paper is to analyze factors for restaurant start-ups with big data and implement a system to make it easier for prospective restaurant start-ups to recommend restaurant start-ups that suit them and further increase the success rate for restaurant start-ups. Therefore, this paper is meaningful in analyzing the start-up factors desired by prospective restaurant founders with big data, turning them into text, and furthermore, designing and studying the start-up factors shown as big data into a restaurant start-up chatbot system.

Analyzing Box-Office Hit Factors Using Big Data: Focusing on Korean Films for the Last 5 Years

  • Hwang, Youngmee;Kim, Kwangsun;Kwon, Ohyoung;Moon, Ilyoung;Shin, Gangho;Ham, Jongho;Park, Jintae
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.217-226
    • /
    • 2017
  • Korea has the tenth largest film industry in the world; however, detailed analyses using the factors contributing to successful film commercialization have not been approached. Using big data, this paper analyzed both internal and external factors (including genre, release date, rating, and number of screenings) that contributed to the commercial success of Korea's top 10 ranking films in 2011-2015. The authors developed a WebCrawler to collect text data about each movie, implemented a Hadoop system for data storage, and classified the data using Map Reduce method. The results showed that the characteristic of "release date," followed closely by "rating" and "genre" were the most influential factors of success in the Korean film industry. The analysis in this study is considered groundwork for the development of software that can predict box-office performance.