International Journal of Fuzzy Logic and Intelligent Systems
/
v.16
no.2
/
pp.111-118
/
2016
Artificial intelligence (AI) is making computer systems intelligent to do right thing. The AI is used today in a variety of fields, such as journalism, medical, industry as well as entertainment. The impact of AI is becoming larger day after day. In general, the AI system has to lead the optimal decision under uncertainty. But it is difficult for the AI system can derive the best conclusion. In addition, we have a trouble to represent the intelligent capacity of AI in numeric values. Statistics has the ability to quantify the uncertainty by two approaches of frequentist and Bayesian. So in this paper, we propose a methodology of the connection between statistics and AI efficiently. We compute a fixed value for estimating the population parameter using the frequentist learning. Also we find a probability distribution to estimate the parameter of conceptual population using Bayesian learning. To show how our proposed research could be applied to practical domain, we collect the patent big data related to Apple company, and we make the AI more intelligent to understand Apple's technology.
Journal of the Korean Society of Clothing and Textiles
/
v.45
no.1
/
pp.28-45
/
2021
The importance of smart clothing as a product is increasingly emphasized as further growth in the potential of the smart market is expected. There is a high understanding and sympathy for the potential of smart clothing in the mass consumer market; therefore, commercialization is not actively carried out. This study enhances the understanding of the development direction of products with a focus on technical benefits, in order for smart clothing to gain access to customers as wearable devices. This study identifies major technologies used in smart clothing through an analysis of the patent technology status of smart clothing in Korea. Smart clothing is divided into three types: passive smart, active smart and advanced smart clothing based on a reaction mechanism and functional scope. We present the smart clothing and discuss the product features for three types. According to research, smart clothing products were equipped with passive, active, and advanced smart systems as well as provided new services by converging big data and AI technologies, rather than only using technologies such as sensors, controls, and actuators. Future directions for new smart clothing product development is also discussed in the conclusion.
Journal of Korean Society of Industrial and Systems Engineering
/
v.45
no.4
/
pp.199-209
/
2022
As the uncertainty of technology development and market needs increases due to changes in the global business environment, the interest and demand for R&D activities of individual companies are increasing. To respond to these environmental changes, technology commercialization players are paying great attention to enhancing the qualitative competitiveness of R&D. In particular, R&D companies in the marine and fishery sector face many difficulties compared to other industries. For example, the R&D environment is barren, it is challenging to secure R&D human resources, and it is facing a somewhat more difficult environment compared to other sectors, such as the difficulty in maintaining R&D continuity due to the turnover rate of researchers. In this study, based on the empirical data and patent status of private companies closely related to the R&D technology status, big data analysis, and simulation analysis methods were used to identify the relative position of individual companies' R&D capabilities and industrial perspectives. In this study, based on industrial evidence and patent applications closely related to the R&D technology status, the R&D capabilities of individual companies were evaluated using extensive data analysis and simulation analysis methods, and a statistical test was performed to analyze if there were differences in capabilities from an industrial point of view. At this time, the industries to be analyzed were based on all sectors, the maritime industry, the fisheries industry, and the maritime industry integration sector. In conclusion, it was analyzed that there was a certain level of difference in the R&D capabilities of individual companies in each industry sector, Therefore when developing a future R&D capability system, it was confirmed that it was necessary to separate the population for each industry and establish a strategy.
Journal of the Korean Data and Information Science Society
/
v.24
no.5
/
pp.999-1011
/
2013
In this research, we propose a document recommendation method which can find documents that are relatively important to a specific document based on citation information. The key idea is parameter tuning in the Neumann kernal which is an intermediate between a measure of importance (HITS) and of relatedness (co-citation). Our method properly selects the tuning parameter ${\gamma}$ in the Neumann kernal minimizing the prediction error in future citation. We also discuss some comutational issues needed for analysing large citation data. Finally, results of analyzing patents data from the US Patent Office are given.
Since small and medium-sized enterprises fell short of the securement of technological competitiveness in the field of big data and artificial intelligence (AI) field-core technologies of the Fourth Industrial Revolution, it is important to strengthen the competitiveness of the overall industry through technology commercialization. In this study, we aimed to propose a priority related to technology transfer and commercialization for practical use of public research results. We utilized public research performance information, improving missing values of 6T classification by deep learning model with an ensemble method. Then, we conducted topic modeling to derive the converging fields of big data and AI. We classified the technology fields into four different segments in the technology portfolio based on technology activity and technology efficiency, estimating the potential of technology commercialization for those fields. We proposed a priority of technology commercialization for 10 detailed technology fields that require long-term investment. Through systematic analysis, active utilization of technology, and efficient technology transfer and commercialization can be promoted.
본고에서는 한국을 비롯하여 미국, 일본, 유럽의 최근 빅데이터 특허시장을 분석하였다. 분석결과 빅데이터 특허시장은 미국이 세계시장을 독과점하는 구조로 나타났다. 전 세계적으로 가장 활발한 특허 활동을 전개하고 있는 미국 특허를 대상으로 빅데이터 연구개발 트렌드를 조망해 보면 과거에는 다수 기업들에 의하여 많은 특허출원이 이루어지는 경향을 보였으나, 최근 들어 기존 기업들 간의 경쟁이 심화되면서 대기업 위주로 특허출원시장이 재편되어 가는 경향을 보이고 있다. 한편 과거에는 데이터 분석 및 처리기술에 많은 특허출원이 이루어졌으나 최근에는 데이터 운영 및 관리기술로 옮겨가는 것으로 조사되었으며, 특허출원 건수도 과거에 비하여 대폭 증가하고 있는 경향을 보이고 있다. 우리나라의 경우 실시간 처리기술, 저장기술, 표현기술은 상대적으로 높은 출원 점유율을 보이고 있으나, 데이터 수집 및 분석기술은 상대적으로 점유율이 낮게 나타나 관련 기술 강화를 위한 대책 마련이 시급한 것으로 조사되었다. 정부는 이를 위하여 데이터 사이언티스트 양성을 위한 정책적 지원을 확대할 필요가 있다.
Sehyoung Kim;Jaehyeong Park;Hansol Lee;Juyoung Kang
Journal of Intelligence and Information Systems
/
v.29
no.3
/
pp.249-265
/
2023
Recently, the satellite industry has been paying attention to the private-led 'New Space' paradigm, which is a departure from the traditional government-led industry. The space industry, which is considered to be the next food industry, is still receiving relatively little attention in Korea compared to the global market. Therefore, the purpose of this study is to explore future signals that can help determine the market entry strategies of private companies in the domestic satellite industry. To this end, this study utilizes the theoretical background of future signal theory and the Keyword Portfolio Map method to analyze keyword potential in patent document data based on keyword growth rate and keyword occurrence frequency. In addition, news data was collected to categorize future signals into first symptom and early information, respectively. This is utilized as an interpretive indicator of how the keywords reveal their actual potential outside of patent documents. This study describes the process of data collection and analysis to explore future signals and traces the evolution of each keyword in the collected documents from a weak signal to a strong signal by specifically visualizing how it can be used through the visualization of keyword maps. The process of this research can contribute to the methodological contribution and expansion of the scope of existing research on future signals, and the results can contribute to the establishment of new industry planning and research directions in the satellite industry.
Korean manufacturing industry have recently faced the catch-up of China in the mass commodity product, such as automotive, display, and smart phone in terms of market as well as technology. Accordingly, discussion on the importance of achieving catch-up in complex product systems (CoPS) has been increasing as a new innovation engine for the industry. In order to achieve successful catch-up of CoPS, we explored emerging technologies of CoPS, which are featured by the characteristics of radical novelty, relatively fast growth and self-sustaining, through the study of emerging technologies of gas turbine for power generation. We found that emerging technologies of the gas turbine are technologies for combustion nozzle and composition of electrical machine for increasing power efficiency, washing technology for particulate matter, cast and material processing technology for enhancing durability from fatigue, cooling technologies from extremely high temperature, interconnection operation technology between renewable energy and the gas turbine for flexibility in power generation, and big data technology for remote monitoring and diagnosis of the gas turbine. We also found that those emerging technologies resulted in technological progress of the gas turbine by converging with other conventional technologies in the gas turbine. It indicates that emerging technologies in CoPS can be appeared on various technological knowledge fields and have complementary relationship with conventional technologies for technology progress of CoPS. It also implies that latecomers need to pursue integrated learning that includes emerging technologies as well as conventional technologies rather than independent learning related to emerging technologies for successful catch-up of CoPS. Our findings provide an important initial theoretical ground for investigating the emerging technologies and their characteristics in CoPS as well as recognizing knowledge management strategy for successful catch-up of latecomers. Our findings also contribute to the policy development of the CoPS from the perspective of innovation strategy and knowledge management.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.10
/
pp.101-107
/
2018
Recently, Korea's defense industry has advanced highly, and defense R&D budget is gradually increasing in defense budget. However, without objective analysis of defense industry technology, effective defense R&D activities are limited and defense budgets can be used inefficiently. Therefore, in addition to analyzing the defense industry technology quantitatively reflecting the opinions of the experts, this paper aims to analyze the defense industry technology objectively by quantitative methods, and to make efficient use of the defense budget. In addition, we propose a patent analysis method to grasp the characteristics of the defense industry technology and the vacant technology objectively and systematically by applying the big data analysis method, which is one of the keywords of the 4th industrial revolution, to the defense industry technology. The proposed method is applied to the technology of the firepower industry among several defense industrial technologies and the case analysis is conducted. In the process, the patents of 10 domestic companies related to firepower were collected through the Kipris in the defense industry companies' classification of the Korea Defense Industry Association(KDIA), and the data matrix was preprocessed to utilize IPC codes among them. And then, we Implemented association rule mining which can grasp the relation between each item in data mining technique using R program. The results of this study are suggested through interpretation of support, confidence lift index which were resulted from suggested approach. Therefore, this paper suggests that it can help the efficient use of massive national defense budget and enhance the competitiveness of defense industry technology.
Journal of the Korea Society of Computer and Information
/
v.25
no.9
/
pp.37-44
/
2020
AI technology has developed in the form of decision support technology in law, patent, finance and national defense and is applied to disease diagnosis and legal judgment. To search real-time information with Deep Learning, Big data Analysis and Deep Learning Algorithm are required. In this paper, we try to predict the entrance rate to high-ranking universities using a Deep Learning model, RNN(Recurrent Neural Network). First, we analyzed the current status of private academies in administrative districts and the number of students by age in administrative districts, and established a socially accepted hypothesis that students residing in areas with a high educational fever have a high rate of enrollment in high-ranking universities. This is to verify based on the data analyzed using the predicted hypothesis and the government's public data. The predictive model uses data from 2015 to 2017 to learn to predict the top enrollment rate, and the trained model predicts the top enrollment rate in 2018. A prediction experiment was performed using RNN, a Deep Learning model, for the high-ranking enrollment rate in the special education zone. In this paper, we define the correlation between the high-ranking enrollment rate by analyzing the household income and the participation rate of private education about the current status of private institutes in regions with high education fever and the effect on the number of students by age.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.