• Title/Summary/Keyword: Big Data Patent

Search Result 65, Processing Time 0.027 seconds

A study on the R&D Direction of BigData technologies (빅데이터 R&D 방향성에 대한 연구)

  • Kim, Pang-ryong;Hong, Jae-pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.732-733
    • /
    • 2014
  • This study aims to examine the R&D trends on Big Data sector through patent analysis and to suggest directions of the R&D activities in Korea. According to the results of analysis, the R&D trends of Big Data sector have shown two characteristics. First, the US has monopolized the world market of Big Data Sector. The patent activities of US have shown relatively even throughout every technology. And the average share of each technology is over 40%. Second, the trends of R&D have been changed. In the past, data analysis and processing technologies were the mainstream, whereas data operations and management technologies are mainly featured. However, the patent applications in Korea have been concentrated on storage technologies, while the applications for data operations and management technologies are correspondingly low; therefore, it seemingly needs urgent research and development of relevant technologies.

  • PDF

A Study on prediction of patent big data using supervised learning with dimension reduction model (지도학습 기반의 차원축소 모델을 이용한 특허 빅데이터 예측에 관한 연구)

  • Lee, Juhyun;Lee, Junseok;Kang, Jiho;Park, Sangsung;Jang, Dongsik;Hong, Sungwook;Kim, Sunyoung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.41-49
    • /
    • 2019
  • Patents are system to promote the development of industry by disclosing technology. The importance of recent patent is being emphasized. For this reason, companies apply for many patents. And they analyze the patent. Patent analysis helps to protect and foster their technology. Previously this method has been carried out by experts. Expert-based patent analysis, however, has the disadvantage of being time-consuming and expensive. Consequently, we try to solve this problems by developing prediction model. Therefore, this paper proposes a data-based patent analysis method using quantitative indicator and textual information. We confirmed the practical applicability of the proposed method through 1,831 autonomous vehicle patents. As a result, it was possible to confirmed that safety and lane detection related technologies are important.

Strategies of Knowledge Pricing and the Impact on Firms' New Product Development Performance

  • Wu, Chuanrong;Tan, Ning;Lu, Zhi;Yang, Xiaoming;McMurtrey, Mark E.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3068-3085
    • /
    • 2021
  • The economics of big data knowledge, especially cloud computing and statistical data of consumer preferences, has attracted increasing academic and industry practitioners' attention. Firms nowadays require purchasing not only external private patent knowledge from other firms, but also proprietary big data knowledge to support their new product development. Extant research investigates pricing strategies of external private patent knowledge and proprietary big data knowledge separately. Yet, a comprehensive investigation of pricing strategies of these two types of knowledge is in pressing need. This research constructs an overarching pricing model of external private patent knowledge and proprietary big data knowledge through the lens of firm profitability as a knowledge transaction recipient. The proposed model can help those firms who purchase external knowledge choose the optimal knowledge structure and pricing strategies of two types of knowledge, and provide theoretical and methodological guidance for knowledge transaction recipient firms to negotiate with knowledge providers.

Research on R&D Planning Through NLP Analysis of Patent Information: Focusing on Display Technology (특허정보의 NLP 분석을 통한 R&D 계획수립 방안 연구: 디스플레이 기술 분석을 중심으로)

  • Kim, Jung-Heui;Kim, Young-Min
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.817-826
    • /
    • 2022
  • Patent information describes the history of technological progress in the relevant field, so it can be usefully used to identify trends in technological development and change and to establish R&D development strategies. This study proposes a method to identify the needs and problems of technology development at the planning stage of the R&D process and to analyze core technologies through patent analysis using Natural Language Processing(NLP) technology. As a big data source, collected patent documents registered in Google Patents for foldable technology, the latest technology in the display industry, and then extracted keywords using NLP analyzer. By classifying the extracted keywords into needs and problems for technology development, developed technology and materials, identified the needs of the market and customers and analyzed the technologies being researched and developed. Unlike previous studies that performed patent analysis, this methodology is different in that it can quickly and conveniently analyze the latest technology trends from big data called patents even if you do not have specialized knowledge and skills in the text mining. This study contributes to the digitalization of the R&D process based on data analysis.

A Novel Classification Model for Efficient Patent Information Research (효율적인 특허정보 조사를 위한 분류 모형)

  • Kim, Youngho;Park, Sangsung;Jang, Dongsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.103-110
    • /
    • 2019
  • A patent contains detailed information of the developed technology and is published to the public. Thus, patents can be used to overcome the limitations of traditional technology trend research and prediction techniques. Recently, due to the advantages of patented analytical methodology, IP R&D is carried out worldwide. The patent is big data and has a huge amount, various domains, and structured and unstructured data characteristics. For this reason, there are many difficulties in collecting and researching patent information. Patent research generally writes the Search formula to collect patent documents from DB. The collected patent documents contain some noise patents that are irrelevant to the purpose of analysis, so they are removed. However, eliminating noise patents is a manual task of reading and classifying technology, which is time consuming and expensive. In this study, we propose a model that automatically classifies The Noise patent for efficient patent information research. The proposed method performs Patent Embedding using Word2Vec and generates Noise seed label. In addition, noise patent classification is performed using the Random forest. The experimental data is published and registered with the USPTO among the patents related to Ocean Surveillance & Tracking Network technology. As a result of experimenting with the proposed model, it showed 73% accuracy with the label actually given by experts.

The Analysis of Patent Trends and Radiation Convergence Technology (방사선 융합기술과 특허 동향 분석)

  • Park, Jang-Hoon;Ock, Young Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.785-790
    • /
    • 2019
  • Convergence and advancement between technologies such as Artificial Intelligence, Big Data, and the Internet of Things have a significant impact on the regional flagship industry. All technical fields are used as a converged technology by connecting between technology and industry. In order to understanding the recent technical trend, it is possible to easily realized the technical trend research and analysis through keyword search using patent information. The purpose of this study is to identify patent trends applied to convergence technology in the 4th Industrial Revolution age in radiation technology development and to present patent trends and analysis for strengthening and utilizing radiation-related industrial technology competitiveness and to apply them to demand technology and forecast future promising technologies.

Customer Classification and Market Basket Analysis Using K-Means Clustering and Association Rules: Evidence from Distribution Big Data of Korean Retailing Company (군집분석과 연관규칙을 활용한 고객 분류 및 장바구니 분석: 소매 유통 빅데이터를 중심으로)

  • Liu, Run-Qing;Lee, Young-Chan;Mu, Hong-Lei
    • Knowledge Management Research
    • /
    • v.19 no.4
    • /
    • pp.59-76
    • /
    • 2018
  • With the arrival of the big data era, customer data and data mining analysis have gradually dominated the process of Customer Relationship Management (CRM). This phenomenon indicates that customer data along with the use of information techniques (IT) have become the basis for building a successful CRM strategy. However, some companies can not discover valuable information through a large amount of customer data, which leads to the failure of making appropriate business strategy. Without suitable strategies, the companies may lose the competitive advantage or probably go bankrupt. The purpose of this study is to propose CRM strategies by segmenting customers into VIPs and Non-VIPs and identifying purchase patterns using the the VIPs' transaction data and data mining techniques (K-means clustering and association rules) of online shopping mall in Korea. The results of this paper indicate that 227 customers were segmented into VIPs among 1866 customers. And according to 51,080 transactions data of VIPs, home product and women wear are frequently associated with food, which means that the purchase of home product or women wears mainly affect the purchase of food. Therefore, marketing managers of shopping mall should consider these shopping patterns when they build CRM strategy.

A Study on Patent Data Analysis and Competitive Advantage Strategy using TF-IDF and Network Analysis (TF-IDF와 네트워크분석을 이용한 특허 데이터 분석과 경쟁우위 전략수립에 관한 연구)

  • Yun, Seok-Yong;Han, Kyeong-Seok
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.529-535
    • /
    • 2018
  • Data is explosively growing, but many companies are still using data analysis only for descriptive analysis or diagnostic analysis, and not appropriately for predictive analysis or enterprise technology strategy analysis. In this study, we analyze the structured & unstructured patent data such as IPC code, inventor, filing date and so on by using big data analysis techniques such as network analysis and TF-IDF. Through this analysis, we propose analysis process to understand the core technology and technology distribution of competitors and prove it through data analysis.

Patent Keyword Analysis using Gamma Regression Model and Visualization

  • Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.143-149
    • /
    • 2022
  • Since patent documents contain detailed results of research and development technologies, many studies on various patent analysis methods for effective technology analysis have been conducted. In particular, research on quantitative patent analysis by statistics and machine learning algorithms has been actively conducted recently. The most used patent data in quantitative patent analysis is technology keywords. Most of the existing methods for analyzing the keyword data were models based on the Gaussian probability distribution with random variable on real space from negative infinity to positive infinity. In this paper, we propose a model using gamma probability distribution to analyze the frequency data of patent keywords that can theoretically have values from zero to positive infinity. In addition, in order to determine the regression equation of the gamma-based regression model, two-mode network is constructed to visualize the technological association between keywords. Practical patent data is collected and analyzed for performance evaluation between the proposed method and the existing Gaussian-based analysis models.

Korean Machine Reading Comprehension for Patent Consultation Using BERT (BERT를 이용한 한국어 특허상담 기계독해)

  • Min, Jae-Ok;Park, Jin-Woo;Jo, Yu-Jeong;Lee, Bong-Gun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.4
    • /
    • pp.145-152
    • /
    • 2020
  • MRC (Machine reading comprehension) is the AI NLP task that predict the answer for user's query by understanding of the relevant document and which can be used in automated consult services such as chatbots. Recently, the BERT (Pre-training of Deep Bidirectional Transformers for Language Understanding) model, which shows high performance in various fields of natural language processing, have two phases. First phase is Pre-training the big data of each domain. And second phase is fine-tuning the model for solving each NLP tasks as a prediction. In this paper, we have made the Patent MRC dataset and shown that how to build the patent consultation training data for MRC task. And we propose the method to improve the performance of the MRC task using the Pre-trained Patent-BERT model by the patent consultation corpus and the language processing algorithm suitable for the machine learning of the patent counseling data. As a result of experiment, we show that the performance of the method proposed in this paper is improved to answer the patent counseling query.