• Title/Summary/Keyword: Big Data Mining

Search Result 691, Processing Time 0.026 seconds

Comparing Corporate and Public ESG Perceptions Using Text Mining and ChatGPT Analysis: Based on Sustainability Reports and Social Media (텍스트마이닝과 ChatGPT 분석을 활용한 기업과 대중의 ESG 인식 비교: 지속가능경영보고서와 소셜미디어를 기반으로)

  • Jae-Hoon Choi;Sung-Byung Yang;Sang-Hyeak Yoon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.347-373
    • /
    • 2023
  • As the significance of ESG (Environmental, Social, and Governance) management amplifies in driving sustainable growth, this study delves into and compares ESG trends and interrelationships from both corporate and societal viewpoints. Employing a combination of Latent Dirichlet Allocation Topic Modeling (LDA) and Semantic Network Analysis, we analyzed sustainability reports alongside corresponding social media datasets. Additionally, an in-depth examination of social media content was conducted using Joint Sentiment Topic Modeling (JST), further enriched by Semantic Network Analysis (SNA). Complementing text mining analysis with the assistance of ChatGPT, this study identified 25 different ESG topics. It highlighted differences between companies aiming to avoid risks and build trust, and the general public's diverse concerns like investment options and working conditions. Key terms like 'greenwashing,' 'serious accidents,' and 'boycotts' show that many people doubt how companies handle ESG issues. The findings from this study set the foundation for a plan that serves key ESG groups, including businesses, government agencies, customers, and investors. This study also provide to guide the creation of more trustworthy and effective ESG strategies, helping to direct the discussion on ESG effectiveness.

A Study of protective measures of the source program for the development of the Internet of Things (IoT): Protection of the program as well as plagiarism research (사물인터넷(IoT)발전을 위한 소스프로그램 보호방안 연구: 프로그램의 보호와 유사표절 연구)

  • Lee, Jong-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.31-45
    • /
    • 2018
  • Recent dramatical development of computer technology related to internet technology intensifies the dispute over software of computer or smart device. Research on software has been flourished with political issuing of fierce competition among nations for software development. Particularly industrial growth in ethernet based big data and IoT (Internet of Things) has promoted to build and develop open source programs based on java, xcode and C. On these circumstances, issue on software piracy has been confronted despite the basic security policy protecting intellectual property rights of software and thus it is of substantial importance to protect the rights of originality of source program license. However, the other issue on source technology protection of developer is the possibility of hindrance to advancement in industry and culture by developing programs. This study discuss the way of enhancing legal stability of IoT application program development and reinforcing precision in inspection of program plagiarism by analyzing the source programs with newly introducing text mining technique, thus suggests an alternative protective way of infringement of personal information due to duplicating program.

Research on Designing Korean Emotional Dictionary using Intelligent Natural Language Crawling System in SNS (SNS대상의 지능형 자연어 수집, 처리 시스템 구현을 통한 한국형 감성사전 구축에 관한 연구)

  • Lee, Jong-Hwa
    • The Journal of Information Systems
    • /
    • v.29 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • Purpose The research was studied the hierarchical Hangul emotion index by organizing all the emotions which SNS users are thinking. As a preliminary study by the researcher, the English-based Plutchick (1980)'s emotional standard was reinterpreted in Korean, and a hashtag with implicit meaning on SNS was studied. To build a multidimensional emotion dictionary and classify three-dimensional emotions, an emotion seed was selected for the composition of seven emotion sets, and an emotion word dictionary was constructed by collecting SNS hashtags derived from each emotion seed. We also want to explore the priority of each Hangul emotion index. Design/methodology/approach In the process of transforming the matrix through the vector process of words constituting the sentence, weights were extracted using TF-IDF (Term Frequency Inverse Document Frequency), and the dimension reduction technique of the matrix in the emotion set was NMF (Nonnegative Matrix Factorization) algorithm. The emotional dimension was solved by using the characteristic value of the emotional word. The cosine distance algorithm was used to measure the distance between vectors by measuring the similarity of emotion words in the emotion set. Findings Customer needs analysis is a force to read changes in emotions, and Korean emotion word research is the customer's needs. In addition, the ranking of the emotion words within the emotion set will be a special criterion for reading the depth of the emotion. The sentiment index study of this research believes that by providing companies with effective information for emotional marketing, new business opportunities will be expanded and valued. In addition, if the emotion dictionary is eventually connected to the emotional DNA of the product, it will be possible to define the "emotional DNA", which is a set of emotions that the product should have.

Development of Filtering System ADDAVICHI for Fake Reviews using Big Data Analysis (빅데이터 분석을 활용한 가짜 리뷰 필터링 시스템 ADDAVICHI)

  • Jeong, Davichi;Rho, Young-J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, consumer distrust has deepened due to blog posts focusing only on public relations due to 'viral marketing'. In addition, marketing projects such as false writing or exaggerated use of the latter phase are one of the most popular programs in 2016 as they are cheaper and more effective than newspaper and TV ads, and the size of advertising costs is set to be a major means of advertising at '3 trillion 394.1 billion won. From this 'viral marketing,' it has become an Internet environment that needs tools to filter information. The fake review filtering application ADDAVICHI presented in this paper extracts, analyzes, and presents blog keywords, total number of searches, reliability and satisfaction when users search for content such as "event" and "taste restaurant." Reliability shows the number of ad posts on a blog, the total number of posts, and satisfaction shows a clean post with confidence divided into positive and negative posts. Finally, the keyword shows a list of the top three words in the review from a positive post. In this way, it helps users interpret information away from advertising.

The controversial points for the assessment of soil contamination related to the change of pH of extraction solution in using partial extraction in standard method in Korea (국내 토양오염 공정시험방법의 용출법 사용시 용출액의 pH의 변화가 토양 오염 평가에 미치는 문제점)

  • 오창환;유연희;이평구;이영엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.294-297
    • /
    • 2000
  • Heavy metals are extracted from Chonju stream sediment, roadside soils and sediments along Honam expressway, soils and tailings from mining area using partial ectraction in Standard Method, partial ectraction method with maintaining 0.1N of extraction solution and acid digestion. In samples having buffer capacity against acid, 0.1N of extraction solution can not be maintained and pH of extraction solution increases up to 8.0 when partial extraction in Standard Method is used. The averages and ranges of (heavy metals extracted using partial extraction in standard method, HPE)/(heavy metals extracted using partial extraction method with maintaining 0.1N of extraction solution, HPEM) values are 0.506 and 0.145~1.126 in Cd, 0.534~ and 0.078~0.928 in Zn, 0.461 and 0.041~1.715 in Mn, 0.359 and 0.011~0.874 in Cu, 0.195 and 0.018~1.785 in Cr, 0.710 and 0.003~3.075 in Pb, and 0.088 and 1.73$\times$10$^{-5}$ ~0.303 in Fe. These data indicate that the difference between HPE and HPEM is big in the order of Fe, Cr, Cu, Mn, Cd, Zn and Pb. It is quite possible that the partial extraction method in Standard Method of soil in Korea is not adequate for an assessment of contamination in area where buffer capacity of soil will be decreased or lost after a long term exposure of soils to environmental damage.

  • PDF

Estimating long-term sustainability of real-time issues on portal sites (포털사이트 실시간이슈 지속가능성 평가)

  • Chong, Min-Young
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.255-260
    • /
    • 2019
  • Real-time search keywords are not only limited to search keywords that are rapidly increasing interest in real-time, but also have a limitation that they are difficult to determine the sustainability as there is a difference in ranking between portal sites. Estimating sustainability for real-time search keywords is significant in terms of overcoming these limitations and providing some predictability. In particular, long-term search keywords that last for more than a month are of high value as long-lasting social issues. Therefore, in this paper, we analyze the interest based on the ranking of the real-time search keywords and the duration based on sustained weeks, days and hours of real-time search keywords by each portal site and the integrated portal site, and then estimating sustainability based on high level of interest and duration, and present a method to derive real-time search issues with high long-term sustainability.

Analyzing Students' Non-face-to-face Course Evaluation by Topic Modeling and Developing Deep Learning-based Classification Model (토픽 모델링 기반 비대면 강의평 분석 및 딥러닝 분류 모델 개발)

  • Han, Ji Yeong;Heo, Go Eun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.267-291
    • /
    • 2021
  • Due to the global pandemic caused by COVID-19 in 2020, there have been major changes in the education sites. Universities have fully introduced remote learning, which was considered as an auxiliary education, and non-face-to-face classes have become commonplace, and professors and students are making great efforts to adapt to the new educational environment. In order to improve the quality of non-face-to-face lectures amid these changes, it is necessary to study the factors affecting lecture satisfaction. Therefore, This paper presents a new methodology using big data to identify the factors affecting university lecture satisfaction changed before and after COVID-19. We use Topic Modeling method to analyze lecture reviews before and after COVID-19, and identify factors affecting lecture satisfaction. Through this, we suggest the direction for university education to move forward. In addition, we can identify the factors of satisfaction and dissatisfaction of lectures from multiangle by establishing a topic classification model with an F1-score of 0.84 based on KoBERT, a deep learning language model, and further contribute to continuous qualitative improvement of lecture satisfaction.

Analysis of the Ripple Effect of the US Federal Reserve System's Quantitative Easing Policy on Stock Price Fluctuations (미국연방준비제도의 양적완화 정책이 주가 변동에 미치는 영향 분석)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • The macroeconomic concept represents the movement of a country's economy, and it affects the overall economic activities of business, government, and households. In the macroeconomy, by looking at changes in national income, inflation, unemployment, currency, interest rates, and raw materials, it is possible to understand the effects of economic actors' actions and interactions on the prices of products and services. The US Federal Reserve System (FED) is leading the world economy by offering various stimulus measures to overcome the corona economic recession. Although the stock price continued to decline on March 20, 2020 due to the current economic recession caused by the corona, the US S&P 500 index began rebounding after March 23 and to 3,694.62 as of December 15 due to quantitative easing, a powerful stimulus for the FED. Therefore, the FED's economic stimulus measures based on macroeconomic indicators are more influencing, rather than judging the stock price forecast from the corporate financial statements. Therefore, this study was conducted to reduce losses in stock investment and establish sound investment by analyzing the FED's economic stimulus measures and its effect on stock prices.

A Study on the Change of Visitor's Perception with the Implementation of Korean Important Agricultural Heritage System: The Field Agricultural Area of the Volcanic Island in Ulleung (국가중요농업유산 제도 시행에 따른 방문객 인식 변화: 울릉 화산섬 밭농업 지역을 대상으로)

  • Do, Jeeyoon;Jeong, Myeongcheol
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.3
    • /
    • pp.173-183
    • /
    • 2022
  • The purpose of this study is to explore the purpose of introducing the system and the possibility of development by comparing the period before and after the implementation of the Korean Important Agricultural Heritage System (KIAHS) using big data. In terms of perception related to Ulleungdo Island, keywords related to accessibility were derived as higher keywords before and after designation, and in particular, keywords such as various approaches and new ports could be found after designation. It can be seen that positive perception increased after the designation of KIAHS, and the perception of good increased particularly. In addition, the exact name of wild greens and keywords for volcanic island appeared in common, but it was confirmed that the influence increased in the results of the centrality analysis after the designation. In other words, it was found that the designation of KIAHS was helpful in preserving traditional knowledge and developing traditional agricultural culture using it.

Developing the Automated Sentiment Learning Algorithm to Build the Korean Sentiment Lexicon for Finance (재무분야 감성사전 구축을 위한 자동화된 감성학습 알고리즘 개발)

  • Su-Ji Cho;Ki-Kwang Lee;Cheol-Won Yang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.32-41
    • /
    • 2023
  • Recently, many studies are being conducted to extract emotion from text and verify its information power in the field of finance, along with the recent development of big data analysis technology. A number of prior studies use pre-defined sentiment dictionaries or machine learning methods to extract sentiment from the financial documents. However, both methods have the disadvantage of being labor-intensive and subjective because it requires a manual sentiment learning process. In this study, we developed a financial sentiment dictionary that automatically extracts sentiment from the body text of analyst reports by using modified Bayes rule and verified the performance of the model through a binary classification model which predicts actual stock price movements. As a result of the prediction, it was found that the proposed financial dictionary from this research has about 4% better predictive power for actual stock price movements than the representative Loughran and McDonald's (2011) financial dictionary. The sentiment extraction method proposed in this study enables efficient and objective judgment because it automatically learns the sentiment of words using both the change in target price and the cumulative abnormal returns. In addition, the dictionary can be easily updated by re-calculating conditional probabilities. The results of this study are expected to be readily expandable and applicable not only to analyst reports, but also to financial field texts such as performance reports, IR reports, press articles, and social media.