• 제목/요약/키워드: Big Data Computing

검색결과 482건 처리시간 0.031초

MapReduce 기반 분산 이미지 특징점 추출을 활용한 빠르고 확장성 있는 이미지 검색 알고리즘 (A Fast and Scalable Image Retrieval Algorithms by Leveraging Distributed Image Feature Extraction on MapReduce)

  • 송환준;이진우;이재길
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1474-1479
    • /
    • 2015
  • IoT 시대를 맞아 모바일 기기의 급격한 성능 향상에 힘입어 폭발적으로 증가하는 멀티미디어 빅데이터의 빠른 처리가 요구되고 있다. 하지만, 이런 환경의 대격변 속에서도 이미지 검색 연구 분야에서는 정확도 향상에 주로 초점을 맞춘 나머지, 고해상도 멀티미디어 데이터 Query에 대한 빠른 처리 측면에서는 제대로 대응하지 못하고 있다. 이에 우리는 이미지 검색만을 분산화한 선행연구와 달리 MapReduce 기반 분산 이미지 특징점 추출 기법을 활용하여 정확도는 유지하면서 빠른 응답시간을 확보하며, BIRCH 인덱싱을 기반으로 메모리 확장성까지 해결한 새로운 분산 이미지 검색 알고리즘을 제안한다. 그리고 제안하는 분산 이미지 검색 알고리즘의 정확도, 처리시간, 확장성에 대한 실험을 통해 뛰어난 성능을 확인한다.

LDA 토픽 모델링을 이용한 액티브 시니어 콘텐츠 트렌드 분석 (Active Senior Contents Trend Analysis using LDA Topic Modeling)

  • 이동우;김유신;신은정
    • 인터넷정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.35-45
    • /
    • 2021
  • 베이비 부머 세대가 고령인구로 진입하면서 기존의 시니어와는 달리 활동적인 모습을 보이는 시니어들이 액티브 시니어라는 신조어로 불리며 새로운 소비자 층으로 떠오르고 있다. 많은 국가들과 기업들도 이들을 주목하고 관련 정책이나 서비스를 제공하고자 하지만 액티브 시니어 트렌드에 대한 연구는 매우 부족한 실정이다. 본 논문에서는 이러한 액티브 시니어에 대한 특징과 이들이 생산하고 소비하는 온라인 미디어 콘텐츠 트렌드를 파악하여, 액티브 시니어를 적극 포용하고 지원할 수 있는 온라인 미디어에 대한 정책 및 서비스 방향성을 제시하고자한다. 이를 위해 소셜 미디어에서 액티브 시니어를 수집 키워드로 2018년 1월 1일부터 2021년 6월 31일까지 8,740건의 데이터를 수집하여 키워드 빈도 분석, TF-IDF 분석, LDA 토픽 모델링 분석을 하였다. 키워드 빈도 분석 및 TF-IDF 분석을 통해서 액티브시니어에 대한 관심도가 급증하고 있다는 것을 파악하였으며 LDA 토픽 모델링 분석을통해서 온라인 콘텐츠의 주제 영역을 10가지로 분류하고 라이프 스타일, 혜택, 쇼핑, 정부 사업, 정부 교육, 건강, 사회/경제, 케어 산업, 실버 주택, 여가로 명명하였다.

GIS/GPS based Precision Agriculture Model in India -A Case study

  • Mudda, Suresh Kumar
    • Agribusiness and Information Management
    • /
    • 제10권2호
    • /
    • pp.1-7
    • /
    • 2018
  • In the present day context of changing information needs of the farmers and diversified production systems there is an urgent need to look for the effective extension support system for the small and marginal farmers in the developing countries like India. The rapid developments in the collection and analysis of field data by using the spatial technologies like GPS&GIS were made available for the extension functionaries and clientele for the diversified information needs. This article describes the GIS and GPS based decision support system in precision agriculture for the resource poor farmers. Precision farming techniques are employed to increase yield, reduce production costs, and minimize negative impacts to the environment. The parameters those can affect the crop yields, anomalous factors and variations in management practices can be evaluated through this GPS and GIS based applications. The spatial visualisation capabilities of GIS technology interfaced with a relational database provide an effective method for analysing and displaying the impacts of Extension education and outreach projects for small and marginal farmers in precision agriculture. This approach mainly benefits from the emergence and convergence of several technologies, including the Global Positioning System (GPS), geographic information system (GIS), miniaturised computer components, automatic control, in-field and remote sensing, mobile computing, advanced information processing, and telecommunications. The PPP convergence of person (farmer), project (the operational field) and pixel (the digital images related to the field and the crop grown in the field) will better be addressed by this decision support model. So the convergence and emergence of such information will further pave the way for categorisation and grouping of the production systems for the better extension delivery. In a big country like India where the farmers and holdings are many in number and diversified categorically such grouping is inevitable and also economical. With this premise an attempt has been made to develop a precision farming model suitable for the developing countries like India.

키 유출 없이 저장되고 암호화된 정보를 계산할 수 있는 암호기술에 관한 연구 (A Study on the Cryptography Technology for Computing Stored and Encrypted Information without Key Leakage)

  • 문형진;황윤철
    • 산업융합연구
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2019
  • 정보의 기밀성을 보장하기 위해 고대로부터 다양한 암호기술들이 제안되었고, 다양한 방식으로 발전하고 있다. 기하급수적으로 증가하는 컴퓨터 파워로 인해 안전성 때문에 암호화 키가 점차 증가되고, 짧은 기간에만 안전성을 보장받는 방식으로 기술이 발전되고 있다. 4차 산업혁명의 도래로 다양한 분야에 암호화기술이 요구되고 있다. 최근 동형암호를 활용한 암호화 기술이 주목받고 있다. 암호화된 정보의 연산을 위해 복호화하는 과정에서 사용된 키와 복호문의 노출로 인해 보안위협이 발생된다. 동형 암호는 암호문의 데이터를 연산하여 평문상태의 정보를 노출없이 정보를 안전하게 처리가 가능하다. 다양한 서비스에서 암호화된 개인정보가 저장된 빅데이터 처리시 동형암호을 활용할 경우 키사용과 복호화 평문의 노출이 없기 때문에 보안의 위협을 피할 수 있다.

Matching Matrix를 사용하여 운전자와 승객의 관계를 반영한 강화학습 기반 유동적인 가격 책정 체계 (Dynamic Pricing Based on Reinforcement Learning Reflecting the Relationship between Driver and Passenger Using Matching Matrix)

  • 박준형;이찬재;윤영
    • 한국ITS학회 논문지
    • /
    • 제19권6호
    • /
    • pp.118-133
    • /
    • 2020
  • 최근 통합교통서비스(Mobility-as-a-Service)의 개념을 도입하여 이용자들의 이동성과 접근성을 향상시키고자 하는 연구가 진행되고 있다. 특히 카셰어링, 택시 등 에 대해 수요와 공급에 따라 지역을 구분하여 가격을 책정하는 유동적인 가격 책정 전략을 도입하여 단일 요금제가 가지는 서비스 기피 등의 문제를 해결함과 동시에 기업과 운전자들의 수익성에 긍정적인 영향을 줄 수 있을 것으로 기대되고 있다. 본 연구에서는 승객과 운전자간의 배차거리, 승객의 운행거리, 승객의 목적지에 대한 HDBSCAN 알고리즘을 통해서 정밀하게 인식된 수요 밀집지역, 승객과 운전자가 생각하는 선호가격을 고려하여 승객과 운전자의 입장에서 Matching Matrix를 생성한다. 이를 조합하고 보상에 반영하여, 강화학습이 더욱더 현실적인 유동적인 가격 책정전략을 도출할 수 있는 새로운 방법론을 제안한다.

이상 탐지 분석에서 알려지지 않는 공격을 식별하기 위한 이산 웨이블릿 변환 적용 연구 (Application of Discrete Wavelet Transforms to Identify Unknown Attacks in Anomaly Detection Analysis)

  • 김동욱;신건윤;윤지영;김상수;한명묵
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.45-52
    • /
    • 2021
  • 사이버 보안의 침입탐지 시스템에서 알려지지 않는 공격을 식별하기 위한 많은 연구가 이루어지고 있지만, 그 중에서도 이상치를 기반으로 하는 연구가 주목받고 있다. 이에 따라 우리는 알려지지 않는 공격에 대한 범주를 정의하여 이상치를 식별한다. 알려지지 않는 공격은 2가지 범주로 조사하였는데, 첫째는 변종 공격을 생성하는 사항이 있고, 두 번째는 새로운 유형으로 분류하는 연구로 나누었다. 우리는 변종 공격을 생성하는 연구 범주에서 변종과 같이 유사 데이터를 식별할 수 있는 이상치 연구를 수행하였다. 침입탐지 시스템에서 이상치를 식별하는 큰 문제는 정상행동과 공격행동이 같은 공간을 공유하는 것이다. 이를 위해 우리는 이산 웨이블릿 변환으로 정상과 공격에 대해 명확한 유형으로 나눌 수 있는 기법을 적용하고 이상치를 탐지하였다. 결과로 우리는 이산 웨이블릿 변환으로 재구성된 데이터에서 One-Class SVM을 통한 이상치를 식별 할 수 있음을 확인하였다.

Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis

  • Markou, George;Bakas, Nikolaos P.
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.533-547
    • /
    • 2021
  • Calculating the shear capacity of slender reinforced concrete beams without shear reinforcement was the subject of numerous studies, where the eternal problem of developing a single relationship that will be able to predict the expected shear capacity is still present. Using experimental results to extrapolate formulae was so far the main approach for solving this problem, whereas in the last two decades different research studies attempted to use artificial intelligence algorithms and available data sets of experimentally tested beams to develop new models that would demonstrate improved prediction capabilities. Given the limited number of available experimental databases, these studies were numerically restrained, unable to holistically address this problem. In this manuscript, a new approach is proposed where a numerically generated database is used to train machine-learning algorithms and develop an improved model for predicting the shear capacity of slender concrete beams reinforced only with longitudinal rebars. Finally, the proposed predictive model was validated through the use of an available ACI database that was developed by using experimental results on physical reinforced concrete beam specimens without shear and compressive reinforcement. For the first time, a numerically generated database was used to train a model for computing the shear capacity of slender concrete beams without stirrups and was found to have improved predictive abilities compared to the corresponding ACI equations. According to the analysis performed in this research work, it is deemed necessary to further enrich the current numerically generated database with additional data to further improve the dataset used for training and extrapolation. Finally, future research work foresees the study of beams with stirrups and deep beams for the development of improved predictive models.

클라우드 도입이 서비스 연속성에 미치는 영향에 관한 사례 분석 - 장애 중심으로 (A Case Analysis on the Effects of Cloud Adoption on Service Continuity - Focusing on Failures)

  • 허지용;윤준희;한은경
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.121-126
    • /
    • 2023
  • 최근 인공지능, 빅데이터, IOT 등 IT 기술에 대한 서비스 활용도가 높아짐에 따라 방대한 데이터와 이를 처리하는 IT 인프라 자원의 효율적인 관리를 위해 클라우드 컴퓨팅을 도입하여 인프라 비용을 효율화하면서 안정적이고 신뢰성 있는 정보서비스 제공을 위한 노력이 계속되고 있다. 본 논문은 전체 1,750여개의 클라우드 시스템을 운영중인 기업의 클라우드 시스템에서 전국 360개 지점 426개 시스템을 대상으로 클라우드 도입 전과 도입후의 운영결과를 시스템 장애 관점에서 비교분석 하였으며, 분석 결과 장애건수, 장애유형, 서비스 중단 시간 등을 종합할 때 클라우드 도입이 서비스 연속성을 확보하는데 유의미한 결과를 얻었다. 이 결과를 통해 클라우드 도입으로 서비스 연속성 확보를 기대하는 기업에게 의미 있는 시사점을 제공 할 것으로 기대한다.

판결문과 8하원칙에 기반한 인공지능 범죄 예측 모델링 (AI Crime Prediction Modeling Based on Judgment and the 8 Principles)

  • 정혜성;조은비;장정현
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.99-105
    • /
    • 2023
  • 4차 산업혁명 시대의 흐름에 발맞춰 형사사법 분야에서는 효율적인 법률서비스 제공을 위해 인공지능을 활용한 리걸테크(Legaltech)에 주목하고 있다. 본 논문은 국내 형사사법 분야의 리걸테크 활용 가능성을 증대시키기 위해 순환신경망(RNN)을 적용할 수 있는 범죄 예측 모델을 제시한다. 이를 위하여 판결문상 기술된 범죄사실에 기반하여 스크립트 분석기법 활용을 통해 범행 과정을 전·중·후 단계로 구분하였다. 또한, 각 시점에 따라 범죄의 수법과 증거 등을 수사 8하원칙이 가지는 문장 구성 요소와 한국어 품사 구성에 기반하여 객체·행위·환경으로 분류하였다. 이 연구에서 도출된 사건 요약 분석 틀은 특정 범죄 수법의 전형적인 패턴을 파악하기에 용이하며 상황적 범죄예방 전략을 수립하는데 기여할 수 있다. 나아가 이 연구의 결과는 향후 후속연구에서의 RNN모델 기반 범죄 상황 예측 데이터 생성 연구에 유용한 참고자료로 활용될 수 있을 것이다.

해시 트리 기반의 대규모 데이터 서명 시스템 구현 (Implementation of the Large-scale Data Signature System Using Hash Tree Replication Approach)

  • 박승규
    • 융합보안논문지
    • /
    • 제18권1호
    • /
    • pp.19-31
    • /
    • 2018
  • ICT기술이 발전함에 따라 산업 전분야에 걸쳐 이전보다 훨씬 많은 디지털 데이터들이 생성, 이동, 보관, 활용되고 있다. 산출되는 데이터의 규모가 커지고 이를 활용하는 기술들이 발전함에 따라 대규모 데이터 기반의 신 서비스들이 등장하여 우리의 생활을 편리하게 하고 있으나 반대로 이들 데이터를 위변조 하거나 생성 시간을 변경하는 사이버 범죄 또한 증가하고 있다. 이에 대한 보안을 위해서는 데이터에 대한 무결성 및 시간 검증 기술이 필요한데 대표적인 것이 공개키 기반의 서명 기술이다. 그러나 공개키 기반의 서명 기술의 사용은 인증서와 키 관리 등에 필요한 부가적인 시스템 자원과 인프라 소요가 많아 대규모 데이터 환경에서는 적합하지 않다. 본 연구에서는 해시 함수와 머클 트리를 기반으로 시스템 자원의 소모가 적고, 동시에 대규모 데이터에 대해 서명을 할 수 있는 데이터 서명 기법을 소개하고, 서버 고장 등 장애 상황에서도 보다 안정적인 서비스가 가능하도록 개선한 해시 트리 분산 처리 방법을 제안하였다. 또한, 이 기술을 구현한 시스템을 개발하고 성능분석을 실시하였다. 본 기술은 클라우드, 빅데이터, IoT, 핀테크 등 대량의 데이터가 산출되는 분야에서 데이터 보안을 담보하는 효과적인 기술로써 크게 활용될 수 있다.

  • PDF