IoT 시대를 맞아 모바일 기기의 급격한 성능 향상에 힘입어 폭발적으로 증가하는 멀티미디어 빅데이터의 빠른 처리가 요구되고 있다. 하지만, 이런 환경의 대격변 속에서도 이미지 검색 연구 분야에서는 정확도 향상에 주로 초점을 맞춘 나머지, 고해상도 멀티미디어 데이터 Query에 대한 빠른 처리 측면에서는 제대로 대응하지 못하고 있다. 이에 우리는 이미지 검색만을 분산화한 선행연구와 달리 MapReduce 기반 분산 이미지 특징점 추출 기법을 활용하여 정확도는 유지하면서 빠른 응답시간을 확보하며, BIRCH 인덱싱을 기반으로 메모리 확장성까지 해결한 새로운 분산 이미지 검색 알고리즘을 제안한다. 그리고 제안하는 분산 이미지 검색 알고리즘의 정확도, 처리시간, 확장성에 대한 실험을 통해 뛰어난 성능을 확인한다.
베이비 부머 세대가 고령인구로 진입하면서 기존의 시니어와는 달리 활동적인 모습을 보이는 시니어들이 액티브 시니어라는 신조어로 불리며 새로운 소비자 층으로 떠오르고 있다. 많은 국가들과 기업들도 이들을 주목하고 관련 정책이나 서비스를 제공하고자 하지만 액티브 시니어 트렌드에 대한 연구는 매우 부족한 실정이다. 본 논문에서는 이러한 액티브 시니어에 대한 특징과 이들이 생산하고 소비하는 온라인 미디어 콘텐츠 트렌드를 파악하여, 액티브 시니어를 적극 포용하고 지원할 수 있는 온라인 미디어에 대한 정책 및 서비스 방향성을 제시하고자한다. 이를 위해 소셜 미디어에서 액티브 시니어를 수집 키워드로 2018년 1월 1일부터 2021년 6월 31일까지 8,740건의 데이터를 수집하여 키워드 빈도 분석, TF-IDF 분석, LDA 토픽 모델링 분석을 하였다. 키워드 빈도 분석 및 TF-IDF 분석을 통해서 액티브시니어에 대한 관심도가 급증하고 있다는 것을 파악하였으며 LDA 토픽 모델링 분석을통해서 온라인 콘텐츠의 주제 영역을 10가지로 분류하고 라이프 스타일, 혜택, 쇼핑, 정부 사업, 정부 교육, 건강, 사회/경제, 케어 산업, 실버 주택, 여가로 명명하였다.
In the present day context of changing information needs of the farmers and diversified production systems there is an urgent need to look for the effective extension support system for the small and marginal farmers in the developing countries like India. The rapid developments in the collection and analysis of field data by using the spatial technologies like GPS&GIS were made available for the extension functionaries and clientele for the diversified information needs. This article describes the GIS and GPS based decision support system in precision agriculture for the resource poor farmers. Precision farming techniques are employed to increase yield, reduce production costs, and minimize negative impacts to the environment. The parameters those can affect the crop yields, anomalous factors and variations in management practices can be evaluated through this GPS and GIS based applications. The spatial visualisation capabilities of GIS technology interfaced with a relational database provide an effective method for analysing and displaying the impacts of Extension education and outreach projects for small and marginal farmers in precision agriculture. This approach mainly benefits from the emergence and convergence of several technologies, including the Global Positioning System (GPS), geographic information system (GIS), miniaturised computer components, automatic control, in-field and remote sensing, mobile computing, advanced information processing, and telecommunications. The PPP convergence of person (farmer), project (the operational field) and pixel (the digital images related to the field and the crop grown in the field) will better be addressed by this decision support model. So the convergence and emergence of such information will further pave the way for categorisation and grouping of the production systems for the better extension delivery. In a big country like India where the farmers and holdings are many in number and diversified categorically such grouping is inevitable and also economical. With this premise an attempt has been made to develop a precision farming model suitable for the developing countries like India.
정보의 기밀성을 보장하기 위해 고대로부터 다양한 암호기술들이 제안되었고, 다양한 방식으로 발전하고 있다. 기하급수적으로 증가하는 컴퓨터 파워로 인해 안전성 때문에 암호화 키가 점차 증가되고, 짧은 기간에만 안전성을 보장받는 방식으로 기술이 발전되고 있다. 4차 산업혁명의 도래로 다양한 분야에 암호화기술이 요구되고 있다. 최근 동형암호를 활용한 암호화 기술이 주목받고 있다. 암호화된 정보의 연산을 위해 복호화하는 과정에서 사용된 키와 복호문의 노출로 인해 보안위협이 발생된다. 동형 암호는 암호문의 데이터를 연산하여 평문상태의 정보를 노출없이 정보를 안전하게 처리가 가능하다. 다양한 서비스에서 암호화된 개인정보가 저장된 빅데이터 처리시 동형암호을 활용할 경우 키사용과 복호화 평문의 노출이 없기 때문에 보안의 위협을 피할 수 있다.
최근 통합교통서비스(Mobility-as-a-Service)의 개념을 도입하여 이용자들의 이동성과 접근성을 향상시키고자 하는 연구가 진행되고 있다. 특히 카셰어링, 택시 등 에 대해 수요와 공급에 따라 지역을 구분하여 가격을 책정하는 유동적인 가격 책정 전략을 도입하여 단일 요금제가 가지는 서비스 기피 등의 문제를 해결함과 동시에 기업과 운전자들의 수익성에 긍정적인 영향을 줄 수 있을 것으로 기대되고 있다. 본 연구에서는 승객과 운전자간의 배차거리, 승객의 운행거리, 승객의 목적지에 대한 HDBSCAN 알고리즘을 통해서 정밀하게 인식된 수요 밀집지역, 승객과 운전자가 생각하는 선호가격을 고려하여 승객과 운전자의 입장에서 Matching Matrix를 생성한다. 이를 조합하고 보상에 반영하여, 강화학습이 더욱더 현실적인 유동적인 가격 책정전략을 도출할 수 있는 새로운 방법론을 제안한다.
사이버 보안의 침입탐지 시스템에서 알려지지 않는 공격을 식별하기 위한 많은 연구가 이루어지고 있지만, 그 중에서도 이상치를 기반으로 하는 연구가 주목받고 있다. 이에 따라 우리는 알려지지 않는 공격에 대한 범주를 정의하여 이상치를 식별한다. 알려지지 않는 공격은 2가지 범주로 조사하였는데, 첫째는 변종 공격을 생성하는 사항이 있고, 두 번째는 새로운 유형으로 분류하는 연구로 나누었다. 우리는 변종 공격을 생성하는 연구 범주에서 변종과 같이 유사 데이터를 식별할 수 있는 이상치 연구를 수행하였다. 침입탐지 시스템에서 이상치를 식별하는 큰 문제는 정상행동과 공격행동이 같은 공간을 공유하는 것이다. 이를 위해 우리는 이산 웨이블릿 변환으로 정상과 공격에 대해 명확한 유형으로 나눌 수 있는 기법을 적용하고 이상치를 탐지하였다. 결과로 우리는 이산 웨이블릿 변환으로 재구성된 데이터에서 One-Class SVM을 통한 이상치를 식별 할 수 있음을 확인하였다.
Calculating the shear capacity of slender reinforced concrete beams without shear reinforcement was the subject of numerous studies, where the eternal problem of developing a single relationship that will be able to predict the expected shear capacity is still present. Using experimental results to extrapolate formulae was so far the main approach for solving this problem, whereas in the last two decades different research studies attempted to use artificial intelligence algorithms and available data sets of experimentally tested beams to develop new models that would demonstrate improved prediction capabilities. Given the limited number of available experimental databases, these studies were numerically restrained, unable to holistically address this problem. In this manuscript, a new approach is proposed where a numerically generated database is used to train machine-learning algorithms and develop an improved model for predicting the shear capacity of slender concrete beams reinforced only with longitudinal rebars. Finally, the proposed predictive model was validated through the use of an available ACI database that was developed by using experimental results on physical reinforced concrete beam specimens without shear and compressive reinforcement. For the first time, a numerically generated database was used to train a model for computing the shear capacity of slender concrete beams without stirrups and was found to have improved predictive abilities compared to the corresponding ACI equations. According to the analysis performed in this research work, it is deemed necessary to further enrich the current numerically generated database with additional data to further improve the dataset used for training and extrapolation. Finally, future research work foresees the study of beams with stirrups and deep beams for the development of improved predictive models.
최근 인공지능, 빅데이터, IOT 등 IT 기술에 대한 서비스 활용도가 높아짐에 따라 방대한 데이터와 이를 처리하는 IT 인프라 자원의 효율적인 관리를 위해 클라우드 컴퓨팅을 도입하여 인프라 비용을 효율화하면서 안정적이고 신뢰성 있는 정보서비스 제공을 위한 노력이 계속되고 있다. 본 논문은 전체 1,750여개의 클라우드 시스템을 운영중인 기업의 클라우드 시스템에서 전국 360개 지점 426개 시스템을 대상으로 클라우드 도입 전과 도입후의 운영결과를 시스템 장애 관점에서 비교분석 하였으며, 분석 결과 장애건수, 장애유형, 서비스 중단 시간 등을 종합할 때 클라우드 도입이 서비스 연속성을 확보하는데 유의미한 결과를 얻었다. 이 결과를 통해 클라우드 도입으로 서비스 연속성 확보를 기대하는 기업에게 의미 있는 시사점을 제공 할 것으로 기대한다.
4차 산업혁명 시대의 흐름에 발맞춰 형사사법 분야에서는 효율적인 법률서비스 제공을 위해 인공지능을 활용한 리걸테크(Legaltech)에 주목하고 있다. 본 논문은 국내 형사사법 분야의 리걸테크 활용 가능성을 증대시키기 위해 순환신경망(RNN)을 적용할 수 있는 범죄 예측 모델을 제시한다. 이를 위하여 판결문상 기술된 범죄사실에 기반하여 스크립트 분석기법 활용을 통해 범행 과정을 전·중·후 단계로 구분하였다. 또한, 각 시점에 따라 범죄의 수법과 증거 등을 수사 8하원칙이 가지는 문장 구성 요소와 한국어 품사 구성에 기반하여 객체·행위·환경으로 분류하였다. 이 연구에서 도출된 사건 요약 분석 틀은 특정 범죄 수법의 전형적인 패턴을 파악하기에 용이하며 상황적 범죄예방 전략을 수립하는데 기여할 수 있다. 나아가 이 연구의 결과는 향후 후속연구에서의 RNN모델 기반 범죄 상황 예측 데이터 생성 연구에 유용한 참고자료로 활용될 수 있을 것이다.
ICT기술이 발전함에 따라 산업 전분야에 걸쳐 이전보다 훨씬 많은 디지털 데이터들이 생성, 이동, 보관, 활용되고 있다. 산출되는 데이터의 규모가 커지고 이를 활용하는 기술들이 발전함에 따라 대규모 데이터 기반의 신 서비스들이 등장하여 우리의 생활을 편리하게 하고 있으나 반대로 이들 데이터를 위변조 하거나 생성 시간을 변경하는 사이버 범죄 또한 증가하고 있다. 이에 대한 보안을 위해서는 데이터에 대한 무결성 및 시간 검증 기술이 필요한데 대표적인 것이 공개키 기반의 서명 기술이다. 그러나 공개키 기반의 서명 기술의 사용은 인증서와 키 관리 등에 필요한 부가적인 시스템 자원과 인프라 소요가 많아 대규모 데이터 환경에서는 적합하지 않다. 본 연구에서는 해시 함수와 머클 트리를 기반으로 시스템 자원의 소모가 적고, 동시에 대규모 데이터에 대해 서명을 할 수 있는 데이터 서명 기법을 소개하고, 서버 고장 등 장애 상황에서도 보다 안정적인 서비스가 가능하도록 개선한 해시 트리 분산 처리 방법을 제안하였다. 또한, 이 기술을 구현한 시스템을 개발하고 성능분석을 실시하였다. 본 기술은 클라우드, 빅데이터, IoT, 핀테크 등 대량의 데이터가 산출되는 분야에서 데이터 보안을 담보하는 효과적인 기술로써 크게 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.