• Title/Summary/Keyword: Bifunctional electrocatalyst

Search Result 5, Processing Time 0.023 seconds

Development of Bifunctional Electrocatalyst for PEM URFC (고분자 전해질 막을 이용한 일체형 재생 연료전지용 촉매전극 개발)

  • Yim, Sung-Dae;Park, Gu-Gon;Sohn, Young-Jun;Yang, Tae-Hyun;Yoon, Young-Gi;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.23-31
    • /
    • 2004
  • For the fabrication of high efficient bifunctional electrocatalyst of oxygen electrode for PEM URFC (Polymer Electrolyte Membrane Unitized Regenerative Fuel Cell), which is a promising energy storage and conversion system using hydrogen as the energy medium, several bifunctional electrocatalysts were prepared and tested in a single cell URFC system. The catalysts for oxygen electrode revealed fuel cell performance in the order of Pt black > PtIr > PtRuOx > PtRu ~ PtRuIr > PtIrOx, whereas water electrolysis performance in the order of PtIr ~ PtIrOx > PtRu > PtRuIr > PtRuOx ~ Pt black. Considering both reaction modes PtIr was the most effective elctrocatalyst for oxygen electrode of present PEM URFC system. In addition, the water electrolysis performance was significantly improved when Ir or IrOx was added to Pt black just 1 wt.% without the decrease of fuel cell performance. Based on the catalyst screening and the optimization of catalyst composition and loading, the optimum catalyst electrodes for PEM URFC were $1.0mg/cm^2$ of Pt black as hydrogen electrode and $2.0mg/cm^2$ of PtIr (99:1) as oxygen electrode.

Effects of Diffusion Layer (DL) and ORR Catalyst (MORR) on the Performance of MORR/IrO2/DL Electrodes for PEM-Type Unitized Regenerative Fuel Cells

  • Choe, Seunghoe;Lee, Byung-Seok;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • This study aims to examine the influences of substrates/diffusion layers (DL) and oxygen reduction reaction catalysts ($M_{ORR}$) on the performance of $M_{ORR}/IrO_2$/DL-type bifunctional oxygen electrodes for use in polymer electrolyte membrane (PEM)-type unitized regenerative fuel cells (URFC). The $M_{ORR}/IrO_2$/DL electrodes were prepared via two sequential steps: anodic electrodeposition of $IrO_2$ on various DLs and fabrication of $M_{ORR}$ layers (Pt, Pd, and Pt-Ru) by spraying on $IrO_2/DL$. Experiments using different DLs, with Pt as the $M_{ORR}$, revealed that the roughness factor of the DL mainly determined the electrode performance for both water electrolyzer (WE) and fuel cell (FC) operations, while the contributions of porosity and substrate material were insignificant. When Pt-Ru was utilized as the $M_{ORR}$ instead of Pt, WE performance was enhanced and the electrode performance was assessed by analyzing round-trip efficiencies (${\varepsilon}_{RT}$) at current densities of 0.2 and $0.4A/cm^2$. As a result, using Pt-Ru instead of Pt alone provided better ${\varepsilon}_{RT}$ at both current densities, while Pd resulted in very low ${\varepsilon}_{RT}$. Improved efficiency was related to the additional catalytic action by Ru toward ORR during WE operation.

Electrocatalytic properties of Nd1.5Ba1.5CoFeMnOx for water splitting (수전해용 Nd1.5Ba1.5CoFeMnOx 전기촉매 특성 분석)

  • Lee, Ho Jun;Cho, Kyungwon;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.17-20
    • /
    • 2020
  • Developing effective and earth-abundant electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is critical for the commercialization of a water splitting system. In particular, the overpotential of the OER is relatively higher than the HER, and thus, it is considered that one of the important methods to enhance the performance of the electrocatalyst is to reduce the overpotential of the OER. In this work, we present a simple synthetic route for triple perovskite Nd1.5Ba1.5CoFeMnOx with high performance OER and HER activity. This triple perovskite structure which shows high crystallinity through combustion method shows superior bifunctional catalytic performance in alkaline media. We believe that the prepared triple provskite with high performance OER and HER activity can give further feasibility for the commercialization of a water splitting system.

The Trends in Methanol Oxidation Reaction Mechanisms and Electrochemical Oxidation Catalysts (메탄올 산화 반응 메커니즘과 전기화학 산화 촉매 최신 동향)

  • Sungyool Bong
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.79-84
    • /
    • 2024
  • Methane is an abundant and renewable hydrocarbon, but it causes global warming as a greenhouse gas. Therefore, methods to convert methane into useful chemicals or energy sources are needed. Methanol is a simple and abundant chemical that can be synthesized by the partial oxidation of methane. Methanol can be used as a chemical feedstock or a transportation fuel, as well as a fuel for low-temperature fuel cells. However, the electrochemical oxidation of methanol is a complex and multi-step reaction. To understand and optimize this reaction, new electrocatalysts and reaction mechanisms are required. This review discusses the methanol oxidation reaction mechanism, recent research trends, and future research directions.