• Title/Summary/Keyword: Bifidobacterium factor

Search Result 51, Processing Time 0.032 seconds

Bifidogenic Effect of Glucooligosaccharide Prepared from Glucose by Extrusion Process

  • Ahn, Jun-Bae;Hwang, Jae-Kwan;Kim, Chong-Tai;Lee, Ke-Ho;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.174-179
    • /
    • 1997
  • In order to investigate effect of glucooligosaccharide (GOS) prepared by extrusion process as a bifidogenic factor, cultivation of Bifidobacterium sp., Bacteroides fragilis and Clostridium perfringens was done and analyzed. B. fragilis and C. perfringens were able to utilize only 16% and 11% of the oligosaccharides in GOS, respectively, whilst Bifidobacterium sp. FBD-22 could utilize 38%. Especially, many kinds of oligo saccharides in GOS were able to be utilized selectively only by Bifidobacterium sp.. In case that GOS, as a carbon source, was used in the co-cultivation by Bifidobacterium sp., B. fragilis and C. perfringens, growth of Bifidobacterium sp. was not influenced by the existence of B. fragilis and C. perfringens. Bifidobacterium sp. showed advantage on carbon source competition for GOS with B. fragilis. Acetic acid, antimicrobial agent in the intestine, was produced two times more from GOS than glucose in co-cultures of three strains. Therefore, it is suggested that GOS can be a potent bifidogenic factor which proliferates the population of Bifidobacterium sp. and may finally improve the intestinal environments of human.

  • PDF

Isolation of Macrophage-activating Bifidobacterium for the Manufacture of Fermented Rice Products (쌀 발효제품 제조를 위한 마크로파지활성 비피더스균의 선발)

  • 차성관;홍석산;지근억;목철균;박종현
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.509-514
    • /
    • 1999
  • Forty seven amylolytic Bifidobacterium strains were isolated on starch-containing agar medium from the faecal samples of the various age groups of Korean. From these amyloytic Bifidobacterium spp., two strains of KFRI 1535, identified temporarily as Bifidobacterium longum, and KFRI 1550, identified as Bifidobacterium breve, showed great macrophage-stimulating activity for the production of tumor necrosis factor-$\alpha$ and inteleukin-6. As the cell concentration increased the cytokine production increased, although in some strains the cytokine levels started to decline over cell concentration increased the cytokine production increased, although in some strains the cytokine levels started to decline over cell concentration of $250\mu\textrm{g}$/ml. the strains which showed high cytokine-stimulating activity generally showed greater production of nitric oxide even though differences were less between strains. Selected Bifidobacterium strains were compared for their fermentation capability in saccharified rice solution and in apple pomace mixture.

  • PDF

Production of ${\beta}-xylosidase$ from Bifidobacterium sp. Int-57 (Bifidobacterium sp. Int-57이 생산하는 ${\beta}-xylosidase$의 생산특성)

  • Kang, Dong-Hyun;Lee, Ke-Ho;Ji, Geun-Eog
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.89-93
    • /
    • 1993
  • In order to study the effect of the intestinal bacteria on the physiology of the human large intestinal tract, we isolated the intestinal bacteria of Koreans and tested the enzymatic patterns. Isolated Bifidobacterium sp. Int-57 showed the higher activity of ${\beta}-xylosidase$ than other intestinal microorganisms. The effect of the carbon sources, nitrogen sources, inorganic salts, initial pH and initial temperature on the production of ${\beta}-xylosidase$ of Bifidobacterium sp. Int-57 was investigated. The most suitable carbon source, nitrogen source and inorganic salt for the production of ${\beta}-xylosidase$ were 1.1% xylose, 0.4% yeast extract and 0.0003% $CoCl_2$ respectively at initial pH 7.0 and temperature $40^{\circ}C$.

  • PDF

The immune enhancing effects and characteristics of Bifidobacterium longum and Bifidobacterium breve for the probiotic use in humans and animals

  • Park, Ho-Eun;Um, Hyun-Bum;Lee, Wan-Kyu
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.65-72
    • /
    • 2018
  • The purpose of this study was to investigate probiotic characteristics and immune enhancing effects of Bifidobacterium (B.) longum KBB1-26 and BIF-4, B. breve KBB5-22 isolated from human intestine for probiotic use in humans and animals. We measured acid, bile and heat tolerance, antimicrobial activity against pathogenic bacteria, Escherichia (E.) coli, Salmonella (S.) Enteritidis, Staphylococcus (S.) aureus, and Listeria (L.) monocytogenes. Immune enhancing effects of B. longum and B. breve were investigated by measuring nitric oxide (NO), nuclear factor ($NF-{\kappa}b$), $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), interleukin-12 (IL-12) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) in RAW 264.7 cells or RAW BLUE cells. B. longum KBB1-26 was survived at pH 2.0. B. longum KBB1-26 and BIF-4, B. breve KBB5-22 also showed tolerance to 0.3% of oxgall bile salt. B. longum KBB1-26 was able to survive at $70^{\circ}C$ and $80^{\circ}C$ for 20 min. KBB1-26 showed the antimicrobial inhibition zone to pathogenic bacteria such as E. coli (12 mm), S. Enteritidis (14 mm), S. aureus (14 mm) and L. monocytogenes (41 mm). The production of NO ($4.5{\pm}0.00{\mu}M/mL$) and $IL-1{\beta}$ ($39.7{\pm}0.55pg/mL$) of KBB1-26 significantly higher than BIF-4 and KBB5-22, respectively. In addition, KBB1-26 and KBB5-22 induce the production of high level of $TNF-{\alpha}$ and IL-6 in macrophages. Collectively, B. longum KBB1-26 have acid, bile, heat tolerance, antimicrobial activity and immune enhancing effects. These results suggest that KBB1-26 can be used as probiotics for humans and animals.

Growth Factors and ${\alpha},\;{\beta}$ Galactosidase Activities of Bifidobacterium longum ATCC 15707 in Milk and Soymilk (우유와 두유에서 Bifidobacterium longum ATCC 15707의 성장촉진인자 및 ${\alpha},\;{\beta}$ Galactosidase의 활성에 관한 연구)

  • Choi, So-Young;Kim, Yoo-Kyeong;Yoon, Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.987-993
    • /
    • 1996
  • This study was attempted to prepare milk and soymilk containing high number of viable cells of bifidobacteria during the fermentation as well as to establish the optimum condition for bacteria growth. Activity of ${\alpha}$- and ${\beta}-galactosidase$ produced by bifidobacteria was also determined. Milk and soymilk inoculated with Bifidobacterium longum ATCC 15707 were incubated in a nitrogen-carbon dioxide atmosphere at $37^{\circ}C$ for two days. and time courses of pH, acidity, viable cells and effect of growth factors were determined. After two days, pH of milk gradually decreased from 6.81 to 4.84 and pH of soymilk changed from 7.02 to 3.89. The viable cell numbers of bifidobacteria increased constantly in soymilk, while bacterial growth in milk appeared to be delayed after storage of two days. Both of ${\alpha}$- and ${\beta}-galactosidase$ activities were detected in soymilk, but activity of ${\beta}-galactosidase$ was predominant in milk. Fucosyllactose appeared to be a good growth factor in soymilk. During the fermentation of milk, L-cysteine HCl enhanced growth of bifidobacteria at the early stage and fucosyllactose was a good growth factor in the propagations of bifidobacteria from middle stage.

  • PDF

Comparison of gut microbial diversity of breast-fed and formula-fed infants (모유수유와 분유수유에 따른 영아 장내 미생물 군집의 특징)

  • Kim, Kyeong Soon;Shin, Jung;Sim, JiSoo;Yeon, SuJi;Lee, Pyeong An;Chung, Moon Gyu
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.268-273
    • /
    • 2019
  • The intestinal microbiomes vary according to the factors such environment, age and diet. The purpose of this study was to compare the gut microbial diversity between Korean infants receiving breast-fed milk and formula-fed milk. We analyzed microbial communities in stool samples collected from 80 Korean infants using next generation sequencing. Phylum level analysis revealed that microbial communities in both breast-fed infants group (BIG) was dominated by Actinobacteria ($74.22{\pm}3.48%$). Interestingly, the phylum Actinobacteria was dominant in formula-fed infants group A (FIG-A) at $73.46{\pm}4.12%$, but the proportions of phylum Actinobacteria were lower in formulafed infants group B and C (FIG-B and FIG-C) at $66.52{\pm}5.80%$ and $68.88{\pm}4.33%$. The most abundant genus in the BIG, FIG-A, FIG-B, and FIG-C was Bifidobacterium, comprising $73.09{\pm}2.31%$, $72.25{\pm}4.93%$, $63.81{\pm}6.05%$, and $67.42{\pm}5.36%$ of the total bacteria. Furthermore, the dominant bifidobacterial species detected in BIG and FIG-A was Bifidobacterium longum at $68.77{\pm}6.07%$ and $66.85{\pm}4.99%$ of the total bacteria. In contrast, the proportions of B. longum of FIG-B and FIG-C were $58.94{\pm}6.20%$ and $61.86{\pm}5.31%$ of the total bacteria. FIG-A showed a community similar to BIG, which may be due to the inclusion of galactooligosaccharide, galactosyllactose, synergy-oligosaccharide, bifidooligo and improvement material of gut microbiota contained in formula-milk. We conclude that 5-Bifidus factor contained in milk powder promotes the growth of Bifidobacterium genus in the intestines.

Inhibition of Intestinal Bacterial Enzymes by Lactic Acid Bacteria (유산균에 의한 장내미생물효소의 저해)

  • 김동현;한명주
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.169-174
    • /
    • 1995
  • By coculturing E. coli HGU-3 with Bifidobacterium KH-2 or Streptococcus faecalis HGO-7 with Bifidobacterium KH-2, the productivity of $\beta$-glucuronidase and $\beta$-glucosidase was inhibited. When lactulose, growth factor of lactic acid bacteria, was added into this medium, the productivity of these enzymes and pH of the medium were dramatically decreased. When intestinal microflora of human and rat were inoculated in the medium containing lactulose, the enyzme productivity and pH of the medium were dramatically decreased. By s.c. injecting DMH into mice, $\beta$-glucuronidase of intestinal bacteria was induced, but the production of the enzymes was inhibited by adminstering lactulose.

  • PDF

Development of Ginseng yogurt fermented by Bifidobacterium spp (Bifidobacterium을 이용한 인삼 요구르트의 개발)

  • Kim, Na-Young;Han, Myung-Joo
    • Korean journal of food and cookery science
    • /
    • v.21 no.5
    • /
    • pp.575-584
    • /
    • 2005
  • The objective of this study was to develop bioactive ginseng yogurt, fermented by B. minimum KK-1 and B. cholerium KK-2, which showed transforming activity of ginseng extract to compound K. Among older people, 3% ginseng yogurt fermented by B. minimum KK-1 and mixed with Bifidobacterium KK-1, KK-2 showed the highest overall acceptability(6.80, 6.80) among 1%(3.87, 3.67), 2%(4.40, 4.53) and 3% ginseng yogurt. The pH of ginseng yogurt was lower than that of plain yogurt. During 9 days of storage, the pH of each yogurt slightly decreased and then increased until 15 days of storage. The 3 8.25 log CFU/g and B. cholerium KK-2; 7.78 log CFU/g). Therefore, ginseng might be used as a growth factor during the fermentation of yogurt. The L value of ginseng yogurt decreased, and the a and b values increased, with increasing ginseng concentration.

Properties of BE0623 to serve as a growth factor of Bifidobacterium

  • Cho, Young Hoon;Sim, Jae Young;Nam, Myoung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.445-457
    • /
    • 2020
  • Prebiotics are defined as "Nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth and activity of bacteria in the intestine" and as defined improve host health. This study was carried out to investigate the effects of bifidobacteria (Bifidobacterium lactis BB12 and Bifidobacterium longum BB536) growth enhancer (BE0623) supplement as a prebiotic. The addition of BE0623, a growth promoting material for bifidobacteria, significantly increased bifidobacteria viable cells counts in fermented milk by about 45 to 75 times compared to the non-added control group. In addition, microscopic observation showed a significant effect on proliferation of bifidobacteria in fermented milk with added BE0623. The viable cell counts in bifidobacteria also increased roughly 102-fold compared to the control group (non-added BE0623) and was higher than that of commercial growth promoters. Each fraction obtained though the purification of BE0623 influenced the increase of bifidobacteria growth. Culturing bifidobacteria with a combination of fractions of BE0623 had a synergistic effect compared to culturing bifidobacteria with each fraction individually. When any of the fractions were not added, the effect of the growth enhancer on bifidobacteria was reduced. These results indicate that all fractions contain substances that promote the growth of bifidobacteria. Therefore, BE0623 is considered to be available as a growth promoting material for bifidobacterium.

Activities of Oxidative Enzymes Related with Oxygen Tolerance in Bifidobacterium sp.

  • Shin, Soon-Young;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.356-359
    • /
    • 1997
  • To study the relationship between oxygen tolerance and enzyme activity in the oxygen metabolism of bifidobacteria, the activities of catalase, superoxide dismutase (SOD), NADH oxidase and NADH peroxidase from six typical bifidobacteria and other bacteria were assayed by spectrophotometry. Catalase activity was hardly detected in any of the bifidobacteria tested. SOD activity was detected in every species including the Clostridium species. In particular SOD activity was notably high in the aerosensitive Bifidobacterium adolescentis. This fact indicates that SOD activity is not a critical factor to ensure aerotolerance. Aerosensitive B. adolescentis showed very low NADH oxidative enzyme activity whereas other aerotolerant bifidobacteria exhibited considerable activity for the enzymes. It seems that detoxification of $H_2O_2$ by NADH oxidative enzymes might be an important factor in improving for aerotolerant bifidobacteria survival rates in an oxygen environment.

  • PDF