• Title/Summary/Keyword: Bidirectional DC-DC converter

Search Result 291, Processing Time 0.028 seconds

A Study of the Active Resonance Damper for a DC Distributed Power System with Parallel Pulsed Power Loads (병렬펄스부하를 갖는 직류배전시스템을 위한 능동 공진 댐퍼에 대한 연구)

  • La, Jae-Du;Lee, Byung-Hun;Chang, Han-Sol;Woo, Hyun-Min;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1289-1295
    • /
    • 2012
  • An active resonance damper for a DC Distributed Power System(DPS) with parallel loads is presented. Each pulse power load in a DC DPS comprises both a resistive power load and a step-up converter. The step-up converter behave as constant power load(CPL) when tightly regulated and usually cause a negative impedance instability problem. Furthermore, when an input filter is connected to a large constant power load, the instability of DC bus voltage. In this paper, a bidirectional DC/DC converter with a reduced storage capacitor quantitatively are proposed as a active resonance damper, to mitigate the voltage instability on the bus. The validity of the proposed method was confirmed by simulation and experimental works.

Bidirectional ZVS PWM Sepic/Zeta Converter with Low Conduction Loss and Low Switching Loss (저스위칭손실 및 저도통손을 갖는 양방향 ZVS PWM Sepic/Zeta 컨버터)

  • Paeng, S.H.;Lee, B.C.;Choi, S.H.;Kim, I.D.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.549-551
    • /
    • 2005
  • Bidirectional DC/DC converters allows transfer of power between two dc sources, in either direction. Due to their ability to reverse the direction of flow of power, they are being increasingly used in many applications such as battery charger/dischargers, dc uninterruptible power supplies, electrical vehicle motor drives, aerospace power systems, telecom power supplies, etc. This paper proposes a new bidirectional Sepic/zeta converter. It has low swicthing loss and low conduction loss due to auxiliary communicated circuit and synchronous rectifier operation, respectively. Because of positive and buck/boost-like DC voltage transfer function(M=D/1-D), the proposed converter is very desirable for use in distributed power system . The proposed converter also has both transformerless version and transformer one.

  • PDF

Nonisolated Two-Phase Bidirectional DC-DC Converter with Zero-Voltage-Transition for Battery Energy Storage System

  • Lim, Chang-Soon;Lee, Kui-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2237-2246
    • /
    • 2017
  • A nonisolated two-phase bidirectional dc-dc converter (NTPBDC) is a very attractive solution for the battery energy storage system (BESS) applications due to the high voltage conversion ratio and the reduced conduction loss of the switching devices. However, a hard-switching based NTPBDC decreases the overall voltage conversion efficiency. To overcome this problem, this paper proposes a novel NTPBDC with zero-voltage-transition (NTPBDC -ZVT). The soft-switching for the boost and buck main switches is achieved by using a resonant cell, which consists of a single resonant inductor and four auxiliary switches. Furthermore, due to the single resonant inductor, the proposed NTPBDC-ZVT has the advantages of simple implementation, reduced size, and low cost. The validity of the proposed NTPBDC-ZVT is verified through experimental results.

A Design of a PI Compensator for a Bidirectional DC-DC Converter in a DC Distributed Power System

  • Lee, Joonmin;Seok, Bong Jun;La, Jae Du;Kim, Young Seok
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.391-396
    • /
    • 2012
  • The Voltage Bus Conditioner(VBC) is a bidirectional DC-DC converter for damping the instability and any transients of the bus voltage in a DC Distributed Power System(DPS). In this paper, a PI controller for the VBC has been designed for the frequency domain. The proposed PI controller not only dampens the bus transients, but also keeps the storage voltage level. Simulation by Matlab/Simulink and experimental results are presented for the validity of the proposed control technique.

Design of a hybrid power management system and cold start simulation in a fuel cell ship with PLECS

  • Oh, Jin-Seok;Kang, Young-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.429-436
    • /
    • 2016
  • Currently, many studies on green ships are under way. Fuel cell (FC) ships are of interest as future low-emission, fuel-efficient vessels. In this paper, a hybrid power management system for an FC ship was designed. The system consists of an FC, a battery, a unidirectional DC/DC converter, a bidirectional DC/DC converter, a filter, an inverter, and a propulsion component. To design the system, we analyze electric sources and converters, and create PLECS models of hybrid power management system. Then, we check the cold start sequence and perform a simulation to understand the characteristics of the hybrid power management system in an FC ship.

Power Decoupling of Single-phase DC/AC inverter using Dual Half Bridge Converter (듀얼 하프브리지 컨버터를 사용하는 파워 디커플링 DC/AC 인버터)

  • Irfan, Mohammad Sameer;Ahmed, Ashraf;Park, Joung-hu
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.421-422
    • /
    • 2015
  • Nowadays, bidirectional DC-DC converters are becoming more into picture for different applications especially electric vehicles. There are many bidirectional DC-DC converters topologies; however, voltage-fed Dual Half-Bridge (DHB) topology has less number of switches as compared to other isolated bidirectional DC-DC converters. Furthermore, voltage fed DHB has galvanic isolation, high power density, reduced size, high efficiency and hence cost effective. Electrolytic capacitors always have problem regarding size and reliability in DC-AC single phase inverters. Therefore, voltage-fed DHB converter is proposed for the purpose of power decoupling to replace electrolytic capacitor by film capacitors. A new control strategy has been developed for 120Hz ripple rejection, and it was verified by simulation.

  • PDF

A Design Method of Transformer Turns Ratio with the Loss Components Analysis of an Isolated Bidirectional DC-DC Converter (절연형 양방향 DC-DC 컨버터의 손실 성분 분석을 통한 변압기 권선비 설계 방법)

  • Jung, Jae-Hun;Kim, Hak-Soo;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.434-441
    • /
    • 2016
  • This paper deals with transformer turns ratio design with the consideration of loss minimization in isolated bidirectional DC-DC converter. Generally, the rms value of current, magnitude of current at switching instance, and duty ratio of a converter vary according to the turns ratio of an isolation transformer in the converter under the same voltages and output power level. Therefore, the transformer turns ratio has an effect on the total loss in a converter. The switching and conduction losses of IGBTs and MOSFETs consisting of dual-active bridge converter are analyzed, and iron and copper losses in an isolation transformer and inductor are calculated. Total losses are calculated and measured in cases of four different transformer turns ratios through simulation and experiment with 3-kW converter, and an optimum turns ratio that provides minimum losses is found. The usefulness of the proposed transformer turns ratio design approach is verified through simulation and experimental results.

Development of the wind generation output stabilization with Lithium-ion battery (리티움-이온 배터리를 이용한 풍력발전의 출력안정화 시스템 개발)

  • Oh, Seung-Jin;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.178-179
    • /
    • 2010
  • This paper presents a simulation model and analysis of grid-tied wind turbine generator with batteries using the PSCAD/EMTDC software. The modeled system is consist of two inverters and one bidirectional DC/DC converter. These inverter are to capture the maximum active power under varying wind conditions and to keep the DC-Link voltage magnitude at a specific level. And the bidirectional DC/DC converter makes battery charging or discharging depend on power gap between wind turbine output and local load. Aerodynamic models are applied for a wind turbine blade simulator.

  • PDF

Battery energy storage system for 10kW wind turbine output stabilization (배터리 에너지 저장장치를 이용한 10kW 풍력발전출력 안정화 시스템 개발)

  • Oh, Seung-Jin;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.36-37
    • /
    • 2010
  • This paper presents a simulation model and results of experiment about analysis of grid-tied wind turbine generator with batteries. The system consists of two inverters and a bidirectional DC/DC converter. These inverters are to capture the maximum active power under varying wind conditions and to keep the DC-link voltage magnitude at a specific level. And the bidirectional DC/DC converter makes battery charging or discharging depend on power gap between wind turbine output and local load.

  • PDF

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.