• Title/Summary/Keyword: Bidirectional DC-DC converter

Search Result 291, Processing Time 0.023 seconds

Improved Bidirectional Three Phase Interleaved DC-DC Converter for High Efficiency (고효율 달성을 위한 개선된 양방향 3상 인터리브드 DC-DC 컨버터)

  • Kim, Dae Joong;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.29-30
    • /
    • 2014
  • 본 논문에서는 Zero Voltage Switching (ZVS)이 가능한 양방향 3상 인터리브드 DC-DC 컨버터를 제안한다. 기존의 일반적인 하프 브릿지형 양방향 DC-DC 컨버터와 달리 ZVS를 만족시킴으로써 고효율을 달성하였고, 3상 인터리브드 방식을 적용함으로써 출력 전류 리플을 저감시키고 스위치의 정격을 낮출 수 있도록 하였다. 또한 제안하는 토폴로지는 PSIM 시뮬레이션을 통해 검증하였다.

  • PDF

A Study on Bidirectional Coupled-Inductor Interleaved DC-DC Converter for Battery Charging and Discharging System (배터리 충방전 시스템을 위한 양방향 커플드 인덕터 인터리브드 DC-DC 컨버터 특성 연구)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.133-135
    • /
    • 2019
  • 최근 신재생 에너지를 이용한 발전 방법에 관한 활발한 연구가 진행되고 있다. 이로 인해 배터리 충, 방전 분야에서 양방향 DC-DC 컨버터의 수요가 증가 되고 있다. 본 논문에서는 배터리 충, 방전용 양방향 DC-DC 컨버터에 관한 연구로 Interleaved 기법을 적용하여 충전 시 배터리 전압 리플 감소 및 Coupled 인덕터를 적용해 인덕터 전류 리플 감소를 하고 배터리에서 방전 시 출력 전력 증가 및 출력 리플을 감소시키는 연구를 진행하였다. 제안된 컨버터의 특성 및 성능은 시뮬레이션을 통하여 타당성을 검증하였다.

  • PDF

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

Bidirectional Tapped-inductor Boost-Flyback Converter (비절연형 양방향 탭인덕터 부스트 플라이백 컨버터)

  • Kim, Hyun-Woo;Jeon, Young-Tae;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.395-401
    • /
    • 2015
  • This paper proposes a new bidirectional DC-DC converter with high efficiency. The proposed converter is composed of a flyback and a tapped-inductor boost converter to satisfy extreme operating conditions with low cost. The outputs are connected in series to achieve a high-voltage step-up. In the reverse direction, the proposed converter has an extreme step-down voltage. In this study, the proposed converter was employed with a 100 W hardware prototype. To design the controller, a small-signal transfer function of the proposed converter is derived. For PV power conditioning systems, a maximum power point tracking method is applied with perturb and observe method. To verify the operation of the bidirectional power flow, the current controller is applied. All of the controllers are employed with a digital signal processor.

Design of a Variable Inductor Using MR Fluid Gap for Wide Load Range Efficiency Improvement of a Soft-Switching High-Power Density Bidirectional Dc-Dc Converter

  • Ahmed, Furqan;Kim, Su-Han;Cha, Honnyong
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.184-185
    • /
    • 2013
  • In this paper, design of a variable inductor using MR Fluid Gap is proposed for wide load range efficiency improvement of a bidirectional DC-DC converter. As compared to conventional constant value inductor designed to have negative current for ZVS at heavy load but suffers high losses at light load due to its small inductance, the proposed variable inductor not only have small inductance at high current for ZVS but also it has large inductance at low current to decrease light load losses.

  • PDF

Isolated Boost Converter with Bidirectional Operation for Supercapacitor Applications

  • Hernandez, Juan C.;Mira, Maria C.;Sen, Gokhan;Thomsen, Ole C.;Andersen, Michael A.E.
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.507-515
    • /
    • 2013
  • This paper presents an isolated bidirectional dc/dc converter based on primary parallel isolated boost converter (PPIBC). This topology is an efficient solution in low voltage high power applications due to its ability to handle high currents in the low voltage side. In this paper, the converter has been modeled using non-ideal components and operated without any additional circuitry for startup using a digital soft-start procedure. Simulated and measured loop gains have been compared for the validity of the model. On-the-fly current direction change has been achieved with a prototype interconnecting two battery banks. A second prototype has been constructed and tested for supercapacitor operation in constant power charge mode.

Bidirectional Dual Active Half-Bridge Converter Integrated High Power Factor Correction

  • Ngo, AnhTuan;Nam, Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.444-446
    • /
    • 2011
  • A bidirectional dual active converter with the power factor control capability is proposed as a battery charger. The source side half-bridge acts as a PWM converter that maintains the unity power factor. The battery side half-bridge converter acts as a dual active bridge (DAB) together shares the same DC link voltage with PWM converter. The imbalance voltage phenomenon is eliminated by employing asymmetric duty cycle technique. Simulation results are included to verify theoretical analysis.

  • PDF

A Fully Soft Switched Two Quadrant Bidirectional Soft Switching Converter for Ultra Capacitor Interface Circuits

  • Mirzaei, Amin;Farzanehfard, Hosein;Adib, Ehsan;Jusoh, Awang;Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • This paper describes a two quadrant bidirectional soft switching converter for ultra capacitor interface circuits. The total efficiency of the energy storage system in terms of size and cost can be increased by a combination of batteries and ultra capacitors. The required system energy is provided by a battery, while an ultra capacitor is used at high load power pulses. The ultra capacitor voltage changes during charge and discharge modes, therefore an interface circuit is required between the ultra capacitor and the battery. This interface circuit must have good efficiency while providing bidirectional power conversion to capture energy from regenerative braking, downhill driving and the protecting ultra capacitor from immediate discharge. In this paper a fully soft switched two quadrant bidirectional soft switching converter for ultra capacitor interface circuits is introduced and the elements of the converter are reduced considerably. In this paper, zero voltage transient (ZVT) and zero current transient (ZCT) techniques are applied to increase efficiency. The proposed converter acts as a ZCT Buck to charge the ultra capacitor. On the other hand, it acts as a ZVT Boost to discharge the ultra capacitor. A laboratory prototype converter is designed and realized for hybrid vehicle applications. The experimental results presented confirm the theoretical and simulation results.

Operation and Performance Analysis of New Bidirectional Intelligent Semiconductor Transformer (새로운 양방향 지능형 반도체 변압기의 동작과 성능 분석)

  • Kim, Do-Hyun;Lee, Byung-Kwon;Han, Byung-Moon;Lee, Jun-Young;Choi, Nam-Sup
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.169-177
    • /
    • 2013
  • This paper proposes a new configuration of bidirectional intelligent semiconductor transformer with rating of 1.9kV/127V, 2kVA. The proposed transformer consists of high-voltage high-frequency AC-DC rectifier, and low-voltage DC-DC and DC-AC converters. The operational feasibility of proposed transformer was verified by computer simulation with PSCAD/EMTDC software. Based on the simulation results, a hardware prototype with rating of 1.9kV/127V, 2kVA was built and tested in the lab to confirm the feasibility of hardware implementation. Using three units of this transformer, a 3-phase transformer with rating of 3.3kV/220V, 6kVA can be built.

A Novel Input and Output Harmonic Elimination Technique for the Single-Phase PV Inverter Systems with Maximum Power Point Tracking (최대출력추종 제어를 포함한 단상 태양광 인버터를 위한 새로운 입출력 고조파 제거법)

  • Amin, Saghir;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.207-209
    • /
    • 2019
  • This paper proposes a grid-tied photovoltaic (PV) system, consisting of Voltage-fed dual-active-bridge (DAB) dc-dc converter with single phase inverter. The proposed converter allows a small dc-link capacitor, so that system reliability can be improved by replacing electrolytic capacitors with film capacitors. The double line frequency free maximum power point tracking (MPPT) is also realized in the proposed converter by using Ripple Correlation method. First of all, to eliminate the double line frequency ripple which influence the reduction of DC source capacitance, control is developed. Then, a designing of Current control in DQ frame is analyzed and to fulfill the international harmonics standards such as IEEE 519 and P1547, $3^{rd}$ harmonic in the grid is directly compensated by the feedforward terms generated by the PR controller with the grid current in stationary frame to achieve desire Total Harmonic Distortion (THD). 5-kW PV converter and inverter module with a small dc-link film capacitor was built in the laboratory with the proposed control and MPPT algorithm. Experimental results are given to validate the converter performance.

  • PDF