• Title/Summary/Keyword: Biceps femoris

Search Result 305, Processing Time 0.02 seconds

The Analysis of EMG According to Surface Type and Elastic Band Usage During the Pilates Superman Movement (필라테스 슈퍼맨 동작 시 탄성밴드 사용유무와 지면의 종류에 따른 근활성도 분석)

  • Son, Nam-Jeong;Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.219-229
    • /
    • 2015
  • Objective : The purpose of this study was to analyze EMG according to surface type and elastic band usage during the pilates Superman movement. Method : The subjects were 10 female university students with a mean age of 27. The independent variables were surface type (yoga mat, air filled equipment, elastic mat) and elastic band usage. In order to measure muscle activity, the Noraxon(USA) was used. Eight muscles (upper trapezius, lower trapezius, thoracic spine, lumbar spine, gluteus maximus, gluteus medius, biceps femoris, semitendinosus) activation were analyzed. For the statistical analysis, MANOVA, independent t-test and Scheffe test for the post-hoc via SPSS 20.0 was used. Results : The left and right upper trapezius muscle activities were significantly reduced when using the elastic bands. In addition gluteus medius muscle activities significantly increased with the elastic band as well. Conclusion : According to the usage of the elastic band and the different types of surfaces, different muscle groups were recruited. Elastic bands were found to have more activation on the gluteus medius muscle meanwhile there was less activation on the upper trapezius during the pilates Superman movement.

Effects of Squat Exercise on Muscle Activity in Leg Muscles According to the Pressure of Hip Adduction (엉덩관절 모음 압력에 따른 스쿼트 운동이 다리 근육의 활성도에 미치는 영향)

  • Yun, Sae-bom;Bae, Chang-hwan
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.26 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • Background: This study examined the changes in the leg muscle activities of 30 healthy subjects according to different pressures caused by isometric hip adduction during squat exercise. Methods: With their knee flexed at 60°, the subjects performed isometric hip adduction with a pressure of 0, 20, 40, and 60mmHg. Surface electromyography was used to measure their muscle activities. Changes in the activities of the muscles, such as the gluteus maximus (GMAX), Gluteus medius (GM), vastus medialis oblique (VMO), vastus lateralis oblique (VLO), biceps femoris (BF), and Tensor fasciae latae (TFL) muscles, were analyzed. Results: The activities of the VMO, VLO, GM, BF, and GMAX muscles were significantly different after exercise compared to that before exercise (p<.05). The activities of all the leg muscles measured were highest at a pressure of 60mmHg during isometric hip joint adduction. Conclusion: The pressure produced by isometric hip joint adduction during squat exercise increased the leg muscle activities of the subjects. These results will provide basic data on effective squat exercise to alleviate knee joint diseases.

The Effect of Virtual Reality Training on Lower Extremity Muscle Activation in Elderly (가상현실 훈련이 노인의 하지 근활성도에 미치는 영향)

  • Cho, Gyeong-Hee;Shin, Hyung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • PURPOSE: The objective of this study was to determine the effects of virtual reality training on muscle activation in the elderly. METHODS: The subjects were 32 healthy elderly people aged between 65 and 80, who were divided into the VR(virtual reality) training group(n=17) and the control group(n=15). The Virtual reality training group engaged in a 30-minute exercise session using Wii Fit three times a week for eight weeks. Virtual reality training group used the Ski Slalom, Table tile, Balance bubble programs. low-extremity muscle activation of the two groups were measured before and after the intervention. RESULTS: To investigate the effects of the training on lower-extremity muscle activation, biceps femoris, gastrocnemius, tibialis anterior, vastus lateralis were measured. The results revealed that the activation of gastrocnemius and tibialis anterior significantly increased(p<.05), which indicates virtual reality training is effective in improving the activation of the muscles involved in the movement of the ankle joint. CONCLUSION: Virtual reality training is effective in improving the healthy elderly's activation of the muscles involved in the movement of the ankle joint. Thus, virtual reality training can be proposed as a form of fall prevention exercise for the elderly.

Comparison of Muscle Activity in the Contralateral Lower Extremity from the PNF Arm Pattern and Leg Pattern (PNF 팔·다리 패턴에 따른 반대측 다리의 근활성도 비교)

  • Kim, Hee-Gwon
    • PNF and Movement
    • /
    • v.15 no.2
    • /
    • pp.177-183
    • /
    • 2017
  • Purpose: This study compared and analyzed the effect of the proprioceptive neuromuscular facilitation (PNF) arm extension pattern and leg flexion pattern on the contralateral lower extremity muscles when the patterns were applied to the same subject. Methods: In the study, 35 healthy men and women who understood the PNF patterns were selected as participants. The participants completed the PNF arm extension-abduction-internal rotation pattern and leg flexion-adduction-external rotation with knee flexion pattern in the supine position. While the patients' completed each pattern, the contralateral leg muscle activity was measured to examine the irradiation effect. The maximum isometric contraction time of the muscles to be measured was kept for 5 seconds, and the mean value was obtained by repeating the pattern three times. Results: When the leg flexion-adduction-external rotation with knee flexion pattern was completed, the muscle activity in the vastus lateralis, vastus medialis, biceps femoris, tibialis anterior, and gastrocnemius of the contralateral lower extremity was significantly greater than that found in the PNF arm extension-abduction-internal rotation pattern. Conclusion: The PNF leg flexion pattern showed greater muscle activity on the contralateral lower extremity than the arm extension pattern. Thus, the PNF leg extension pattern is more effective in the activation of the muscles associated with weight-bearing activity.

Effectiveness of Iliopsoas Self-Stretching on Hip Extension Angle, Gluteus Maximus Activity, and Pelvic Compensations during Prone Hip Extension in Subjects with Iliopsoas Shortness

  • Kim, Ki-Song;Jeon, In-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.1
    • /
    • pp.23-28
    • /
    • 2018
  • Purpose: This study examined the effectiveness of iliopsoas self-stretching on the hip extension angle, gluteus maximus (GM) activity, and pelvic compensated angle during prone hip extension (PHE) in subjects with iliopsoas shortness. Methods: Twenty-healthy subjects with iliopsoas shortness were recruited. Electromyography (EMG) was used to examine erector spinae (ES), multifidus (MF), GM, and biceps femoris (BF) while performing PHE. An electromagnetic tracking motion analysis device was used to measure the pelvic compensations. The pelvic compensations while performing PHE were considered to be anterior tilting and rotation. A modified Thomas test was used to monitor the hip extension angle before and after iliopsoas self-stretching. A paired t-test was used to investigate the significant difference after iliopsoas self-stretching during PHE. The level of statistical significance was set to ${\alpha}=0.05$. Results: Muscle activity of GM and hip extension angle were significantly greater after iliopsoas self-stretching compared to that before iliopsoas self-stretching during PHE (p<0.05). BF and pelvic rotation angle were significantly lower after iliopsoas self-stretching compared to that before iliopsoas self-stretching during PHE (p<0.05). The muscle activity of ES was not significantly different between PHE before and after iliopsoas self-stretching (p>0.05). Conclusion: Iliopsoas self-stretching can be effective in selectively strengthening the GM muscles with minimized pelvic compensation in subjects with iliopsoas shortness.

Effect of Sex on Carcass and Meat Characteristics of New Zealand White Rabbits Aged 11 Weeks

  • Yalcin, S.;Onbasilar, E.E.;Onbasilar, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1212-1216
    • /
    • 2006
  • This experiment was conducted to determine and compare some characteristics of the meat and carcass of rabbits aged 11 weeks according to sex. In the experiment thirty male and thirty female New Zealand White rabbits were slaughtered. The weights and percentages of cold carcasses, skin with head and limbs, liver, kidney, heart, lung, fore legs, hind legs, breast and ribs, loin and abdominal wall were recorded. The values for carcass length, lumbar circumference, pH in the muscles of Biceps femoris and Longissimus dorsi, meat to bone ratio and cooking loss were also determined. The mean values for cold carcass weight and cold dressing percentage were 832 g and 48.77% in male and 849 g and 48.69% in female, respectively. In this study no significant differences were shown between male and female rabbits in the characteristics of carcass and meat except the value of pH of Longissimus dorsi muscle which was markedly higher in males than that in females meat. Slaughter weight was positively correlated with the weights of carcass, skin with head and limbs, lung, liver, kidney, heart and weights of joints (p<0.01) and dressing percentage (p<0.05).

Effect of Landing Heights on Muscle Activities and Ground Reaction Force during Drop Landing in Healthy Adults (정상 성인에서 착지 시 착지 높이가 근활성도와 지면반발력에 미치는 영향)

  • Chang, Jong-Sung;Lee, Mi-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.2
    • /
    • pp.145-151
    • /
    • 2011
  • Purpose: The study was designed to investigate the effects of landing heights on muscle activities and ground reaction force during drop landing. Methods: Sixteen healthy adults were recruited along with their written informed consent. They performed a drop-landing task at the height of 20, 40, and 60cm. They completed three trials in each condition and biomechanical changes were measured. The data collected by each way of landing task and analyzed by One-way ANOVA. Ground reaction forces were measured by force flate, muscle activities measured by MP150 system. Results: There were significant differences in ground reaction forces, and significant increases in muscle activities of tibialis anterior, medial gastrocnemius and biceps femoris with landing heights. Conclusion: These findings revealed that heights of landing increases risk factors of body damage because of biomechanical mechanism and future studies should focus on prevention from damage of external conditions.

The Effects of Foot Placement and Lifting on Lower Extremity Muscle Activity and Foot Pressure During Sit to Stand in Hemiparetic Patients (뇌졸중 환자의 물건 들고 일어서기 동작이 하지근 활동도 및 족저압에 미치는 영향)

  • Kim, Hee-Tag;Lim, Wan-Sang
    • Journal of Korean Physical Therapy Science
    • /
    • v.17 no.3_4
    • /
    • pp.29-39
    • /
    • 2010
  • Purpose: The purpose of this study was to examine the effect of foot position and lifting an object on muscle activity and foot pressure during sit to stand(STS) in hemiparetic patients. Methods: Fourteen patients participated in this study. Surface electromyography was used to collect muscle activity and foot pressure measurement system was used to analyze foot pressure in hemiparetic side. Three different foot position was assumed(anterior, neutral, posterior) in hemiparetic side. The repeated two-way analysis of variance and multiple comparisons were conducted to determine statistical significance with a significance level of 0.05. Results: The results were as follows. 1) Lower extremity muscle activity was significantly higher(p<0.05) in biceps femoris and tibialis anterior muscle during STS without holding an object. With changing positions of the affected foot, muscle activity was significantly increased (p<0.05) in vastus medialis and lateral gastrocnemius when the foot was positioned in posterior. 2) There was no significant difference(p>0.05) in foot pressure during STS with object holding and foot positioning. Conclusion: Muscle activity showed a significant increase when the foot was positioned in posterior in comparison to the muscle activity when the foot was in neutral or anterior position.

  • PDF

Balance Recovery Mechanisms Against Anterior Perturbation during Standing (직립자세에서의 전방향 동요 시 균형회복 기전)

  • 태기식;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.435-442
    • /
    • 2003
  • In this paper, biomechanical aspects of dynamic대학교postural responses against forward perturbations were experimentally determined simultaneous measurements of joint angles, accelerations. EMG activations, center of pressure(CoP) movements and ground reaction forces(GRF), Thirteen young healthy volunteers, stood on a flat platform, were translated into the forward direction by an AC servo-motor at two separate velocities(0.1m and 0.2m/s). In order to recover postural balance against the forward perturbation, joint motions were observed in the sequence of the ankle dorsiflexion, the knee flexion and then the hip flexion during the later acceleration phase. Both acceleration patterns at the heel and the sacrum were shown the forward acceleration pattern during the later acceleration phase and early of constant velocity phase as increasing platform velocity, respectively. Tibialis anterior(TA) for the ankle dorsiflexion and biceps femoris(BF) for the knee flexion. the primary muscle to recover the forward perturbation, was activated during the half of acceleration phase. Ankle strategy was used for slow-velocity perturbation, but mixed strategy of both ankle and hip used for the fast-velocity perturbation. In addition, parameters of perturbation such as timing and magnitude influenced the postural response against the perturbation.

A comparison of trunk and lower extremity muscle activity during the performance of squats and kneeling squats in persons with stroke: a preliminary study

  • Shim, Suyoung;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.2
    • /
    • pp.86-92
    • /
    • 2019
  • Objective: The purpose of this study was to compare the effects of performing squats and kneeling squats on trunk and lower extremity muscle activity in persons with stroke. Design: Cross-sectional study. Methods: Ten persons with stroke (3 male and 7 female) were recruited. The subjects were instructed to randomly perform the 4 different squat conditions: squat with 30 degrees of knee flexion, squat with 60 degrees of knee flexion, squat with 90 degree of knee flexion, and the kneeling squat. During the squat performance, surface electromyograms (sEMG) was used to assess muscle activity of the erector spinae (ES), gluteus maximus (Gmax), gluteus medius (Gmed), and biceps femoris (BF) muscles. Results: Muscle activation of the ES and BF were significantly increased with the kneeling squats compared to the general squats with 30 degrees and 60 degrees of knee flexion (p<0.05), and muscle activation of the Gmax and Gmed were significantly increased with the kneeling squats compared to all other squat conditions (p<0.05). Conclusions: The results suggest that the kneeling squat is an effective exercise to strengthen the proximal muscles of the lower extremities. Rather than applying a difficult general squat to the stroke population, the kneeling squat may be applied as a safer method for training the proximal muscles.