• 제목/요약/키워드: Biaxial strength

검색결과 191건 처리시간 0.029초

정밀금형 알루미늄 합금 주물에서의 잔류응력 측정에 관한 연구 (On the Measurement of Residual Stresses in Aluminum Alloy Parts Fabricated by Precision Metal Mold Casting)

  • 김채환;문수동;강신일
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2087-2095
    • /
    • 1999
  • One of the main causes of unwanted dimensional changes in precision metal mold casting parts is excessive and irregular residual stresses induced by temperature gradients and plastic deformation in the solidifying shell. Residual stresses can also cause stress cracking, and lower the fatigue life and fracture strength of the casting parts. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling units was designed and the casting specimens were produced to quantify the effects of different cooling conditions on the development of residual stresses. The layer removal method was used to measure the biaxial residual stresses in casting specimens produced from the experiments. The experimental results agreed with Tien-Richmond's theoretical model for thermal stress development for the solidifying metal plate.

연속압입시험의 최적조건 선정을 통한 철강재료의 용접부 잔류응력 평가 (The Evaluation of Residual Stresses in the Welded Joint of Steel Materials by the Optimum Selection of the Advanced Indentation Technique)

  • 유승종;김주현
    • 한국정밀공학회지
    • /
    • 제24권2호
    • /
    • pp.118-126
    • /
    • 2007
  • Most of materials receive forces in use so that the characteristics of materials must be considered in system design to prevent deformation or destruction. Mechanical properties of materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties are strength, hardness, ductility and stiffness. Currently, among major measure facilities to measure the mechanical properties, advanced indentation technique has important use in industrial areas due to nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to find out non-equi-biaxial stress state and the results were compared with general residual stress analyzing method fur verification.

Effect of biaxial stress state on seismic fragility of concrete gravity dams

  • Sen, Ufuk;Okeil, Ayman M.
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.285-296
    • /
    • 2020
  • Dams are important structures for management of water supply for irrigation or drinking, flood control, and electricity generation. In seismic regions, the structural safety of concrete gravity dams is important due to the high potential of life and economic loss if they fail. Therefore, the seismic analysis of existing dams in seismically active regions is crucial for predicting responses of dams to ground motions. In this paper, earthquake response of concrete gravity dams is investigated using the finite element (FE) method. The FE model accounts for dam-water-foundation rock interaction by considering compressible water, flexible foundation effects, and absorptive reservoir bottom materials. Several uncertainties regarding structural attributes of the dam and external actions are considered to obtain the fragility curves of the dam-water-foundation rock system. The structural uncertainties are sampled using the Latin Hypercube Sampling method. The Pine Flat Dam in the Central Valley of Fresno County, California, is selected to demonstrate the methodology for several limit states. The fragility curves for base sliding, and excessive deformation limit states are obtained by performing non-linear time history analyses. Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake.

Microstructures and Mechanical Properties of Pressureless and Spark Plasma Sintered ZrO2(3 mol%Y2O3) Bodies

  • Shin, Na-Young;Han, Jae-Kil;Lee, Hae-Hyoung;Lee, Byong-Taek
    • 한국세라믹학회지
    • /
    • 제42권2호
    • /
    • pp.140-144
    • /
    • 2005
  • The microstructures and mechanical properties of Tetragonal Zirconia Polycrystals (TZP) sintered bodies, which made by pressureless and spark plasma sintering techniques, were investigated using XRD, SEM, and TEM techniques. In the spark plasma sintered samples, the TZP grains were equiaxed type including many sub-grain boundaries regardless of sintering conditions. The biaxial strength of TZP having an average of 80 nm grains in diameter was high in value with 1025 MPa, but fracture toughness showed a low value due to the absence of a fracture toughening mechanism such as transformation toughening. In the Pressureless Sintered (PLSed) samples, the grain size of TZP was strongly dependent on the sintering temperature; i.e., it gradually increased as the sintering temperature increased. The value of fracture toughness increased as the grain size increased by the stress-induced phase transformation and Borne crack deflection.

유한요소법에 의한 Duplex 스테인레스 강의 초소성 해석 (Superplstic Forming Analysis of Duplex Stainless Steel with Finite Element Method)

  • 박지원;강석봉;황영진;이석순
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.89-96
    • /
    • 2009
  • In recent years, there has been a considerable interest in the application of super plastic forming in the aircraft and automotive industries. This requires a detailed design of the technological process in order to exploit its peculiar potentialities better. Nowadays, the finite element method is used to plan the sheet metal forming processes whose simulation requires determination of material constants for super plastic materials. The present work is aimed to show a simple method to characterize super plastic materials duplex stainless steel which was formed by a constant gaspressure to hemispheres with and without back pressure. The forming operation was performed using an in-house designed and built biaxial forming apparatus. The temporal change of dome heights of hemispheres were measured for applying the pressures. The flow stresses and strain rates developed at the top of the dome during the forming step were shown to follow closely the flow stress - strain rate relationship obtained from the strain rate change tests performed at the same temperature.

The Characteristic of Titanium Composites Including of Nano-sized TiNx for Stack Separator

  • Park, Sung-Bum;Ban, Tae-Ho;Woo, Heung-Sik;Kim, Sung-Jin
    • 한국분말재료학회지
    • /
    • 제17권2호
    • /
    • pp.123-129
    • /
    • 2010
  • The fabrication of interconnect from titanium powders and $TiN_x$ powders is investigated. Corrosion-resistant titanium and $TiN_x$ are used as reinforcement in order to reveal high heat and corrosion resistance at the elevated temperature. We fabricated the plates for interconnect reinforced with $TiN_x$ by mixing titanium powders with 10 wt.% of nano-sized $TiN_x$. Spark Plasma Sintering (SPS) was chosen for the sintering of these composites. The plate made of titanium powders and $TiN_x$ powders demonstrates higher corrosion resistance than that of the plate of titanium powders alone. The physical properties of specimens were analyzed by performing hardness test and biaxial strength test. The electrochemical properties, such as corrosion resistance and hydrogen permeability at high temperature, were also investigated. The microstructures of the specimens were investigated by FESEM and profiles of chemical compositions were analyzed by EDX.

개구부가 있는 철근콘크리트 전단벽의 극한해석 (Ultimate Analysis of Reinforced Concrete Shear Walls with Opening)

  • 허남륜;유영화;김운학
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.195-205
    • /
    • 2001
  • An analytical finite element approach to nonlinear behavior of reinforced concrete shear walls with opening under monotonic loading was presented in this paper. In order to achieve the objectives of present paper, the orthogonal anisotropic models for cracked reinforced concrete element based on smeared crack concept were used as the nonlinear material models of biaxial state of stress. The stiffness of cracked concrete was evaluated through the combined use of tension and compression stiffness models in and parallel directions of crack, respectively and shear transfer effect due to the aggregate interlocking at crack surface. The stress and strain of reinforcement in concrete was evaluated using the average stress and average strain relation with bond effect. based on smeared crack concept. The diagonal reinforcing bar was modeled using truss element with bond effect. A special significance of diagonal reinforcement near opening was given to the shear wall with opening and an effective distribution of diagonal reinforcement was presented in order to give an ultimate strength increment as well as a crack control.

  • PDF

Microstructure and Mechanical Properties of β-SiAlON Ceramics Fabricated Using Self-Propagating High-Temperature Synthesized β-SiAlON Powder

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Yun, Jon-Do
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.292-297
    • /
    • 2017
  • ${\beta}-SiAlON$, based on its high fracture toughness, good strength and low abrasion resistance, has been adopted in several industrial fields such as bearings, turbine blades and non-ferrous metal refractories. In general, ${\beta}-SiAlON$ is fabricated by reactive sintering using expensive $Si_3N_4$ and AlN as starting materials. On the other hand, in this study, a cheaper ${\beta}-SiAlON$ starting powder synthesized by SHS was employed to improve price competitiveness compared to that of the reactive sintering process. ${\beta}-SiAlON$ ceramics with various content of the sintering additive $Y_2O_3$ up to 7 wt% were fabricated by conventional pressureless sintering at $1800^{\circ}C$ for 2 to 8 h under $N_2$ pressure of 0.1 MPa. The specimen with 3 wt% $Y_2O_3$ exhibited the best mechanical properties: hardness of 14 GPa, biaxial strength of 830 MPa, fracture toughness of $5MPa{\cdot}m^{1/2}$ and wear rate of about $3{\times}10^{-6}mm^3/N{\cdot}m$.

프리스트레스 콘크리트 부재의 단부정착부의 배근상세를 위한 역학적 모델의 적용 (Application of a Mechanical Model for the Detailing of the End Anchorage Zone of Prestressed Concrete Members)

  • 강원호;방지환;김철희
    • 콘크리트학회지
    • /
    • 제8권4호
    • /
    • pp.201-211
    • /
    • 1996
  • 최근에 계속적으로 발전하고 있는 역학적 모델은 배근상세에 있어서 과거의 경험적인 방법을 대신 할 수 있을 것으로 기대된다. 본 연구에서는 프리스트레스트 콘크리트 부재의 단부 정착부의 배근상세를 위한 역학적 모델을 제안하였다. 제안된 모델에서는 콘크리트의 2축응력상태, 나선철근 배근 상태, 전단 마찰 파괴 등을 고려하였다. 제안된 모델과 다른 연구자의 스터럿 타이 모델, 비선형 유한 요소 해석을 대표적인 실험결과와 비교하였다. 제안된 방법은 파괴하중뿐만 아니라 파괴형태의 예측에 있어서 우수한 것으로 밝혀졌다. 제안 모델은 2차원 해석에 기초한 역학적 모델 및 비선형 해석으로 설명이 불가능한 3차원 파괴 형태를 잘 예측할 수 있음을 알 수 있다.

구속효과를 고려한 콘크리트 충전 원형강관 기둥의 비틀림 거동 (Torsional Behaviour of Concrete Filled Circular Steel Tube Column Considering Confinement Effect)

  • 윤복희;이은택;박지영;장경호
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.529-541
    • /
    • 2004
  • 콘크리트 충전 강관에 대한 기존의 연구는 단일 압축상태, 휨모멘트 상태, 편심 압축력 상태의 연구만이 행해 졌을 뿐 압축력과 비틀림이 조합된 응력 상태에 대한 연구는 거의 이루어지지 않고 있다. 따라서 본 연구에서는 압축력과 비틀림을 받는 원형 CFT 부재의 거동에 대한 특성을 살펴보고 합리적인 해석법을 연구하였다. 원형 CFT부재가 압축력과 비틀림을 받을 경우의 압축 강도와 비틀림 강도를 결정하는데 중요 요소인 구속효과와 부착 응력에 의한 스파이럴 효과를 본 모델에 고려하였다. 이를 위하여 단일 압축응력을 받을 경우 원형 강관에 의해 구속된 콘크리트 코어에 대한 연구가 선행되었다. 또한 비틀림을 받을 경우는 비틀림에 의한 크랙이 콘크리트의 표면을 따라 발생하게 된다. 크랙 발생이후 비틀림을 계속 받게 되면 크랙은 나선형태로 진전되어 콘크리트가 솟아 나오려 하나 강관과 콘크리트 사이의 부착 응력에 의해 억제 되게 된다. 이러한 이유 때문에 코어 콘크리트는 압축응력을 받게 되고 강관만 인장응력을 받게 되는데 이러한 영향 효과를 실제적으로 고려하였다. 연구 결과는 기존의 실험결과와 비교하였으며 제안된 이론은 압축력과 비틀림을 받는 원형 CFT부재의 실제 거동을 합리적으로 설명하고 있다.