• Title/Summary/Keyword: Biaxial Test

Search Result 192, Processing Time 0.024 seconds

THE EFFECT OF SURFACE FINISHES ON FLEXURAL STRENGTH, FRACTURE TOUGHNESS OF FELDSPATHIC DENTAL PORCELAIN

  • Chang, Il-Sung;Lee, Sun-Hyung;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.293-305
    • /
    • 2005
  • Statement of problems. Conventional feldspathic porcelain is used extensively as a restorative material and it is subjected to grinding and polishing during fabrication and delivery procedures. There is still considerable controversy concerning the best methods to achieve the strongest porcelain restorations after such adjustments. Purpose. The objective of this study was to investigate the effects of (1) overglazing, (2) selfglazing, and (3) fine polishing on the flexural strength and fracture toughness of feldspathic dental porcelain. Material and method. Ninety porcelain disks were prepared for flexural strength test and sixty porcelain disks were fabricated for fracture toughness test. Specimens were divided into three groups for each test as follows: 1) overglazed 2) self-glazed 3) polished. The flexural strength of feldspathic porcelains was determined by ring-on-ring biaxial flexural strength test. The fracture toughness values of three experimental groups were obtained by indentation fracture toughness test. Results. The flexural strength of overglazed group was significantly higher than that of selfglazed and polished group (P<0.05), while the difference between self-glazed and polished group was not significant (P>0.05). The fracture toughness values of overglazed and polished group were significantly higher than that of self-glazed group (P<0.05), while the difference between overglazed and polished group was not significant (P>0.05). Conclusions. This results supported the use of polishing as an alternative to glazing metal ceramic restorations, as it was not detrimental in flexural strength and fracture toughness. But, under the conditions of this study, overglazing was the ideal surface finishing method of feldspathic dental porcelain.

Shape Optimal Design of Anti-Vibration Rubber Assembly to Reduce the Vibration of a Tractor Cabin (트랙터 캐빈의 진동저감을 위한 방진고무의 형상최적설계)

  • Choi, Hyo-Joon;Lee, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.657-663
    • /
    • 2018
  • In this study, shape optimization was performed to improve the vibration isolation capability of an anti-vibration rubber assembly, which is used in the field option cabin of agricultural tractors. A uniaxial tension test and biaxial tension test were performed to characterize the hyper-elastic material properties of rubber, and the data were used to calibrate the material model used in the finite element analyses. A field test was performed to quantify the input excitation from the tractor and the output response at the cabin frame. To account for the nonlinear behavior of rubber, static analyses were performed and the load-displacement curve of rubber was derived. The stiffness of the rubber was calculated from this curve and input to the harmonic analyses of the cabin. The results were verified using the test data. Taguchi's parameter design method was used to find the optimal shape of the anti-vibration rubber assembly, which indicated a shape with reduced stiffness. The vibration of the cabin frame was reduced by the optimization by as much as 35% compared to the initial design.

Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities (암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰)

  • Juhyi Yim;Saeha Kwon;Seungbeom Choi;Taehyun Kim;Ki-Bok Min
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.10-28
    • /
    • 2023
  • Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The shear creep test, velocity step test, and slide-hold-slide test can be performed to determine their model parameters or analyze the shear behavior by experiments under various conditions. Testing apparatuses for direct shear, triaxial compression, and biaxial shear were mainly used and improved to reproduce the thermo-hydro-mechanical conditions of local bedrock, and it was confirmed that the shear behavior could vary. In order to design a high-level radioactive waste disposal site in Korea, the long-term behavior of rock discontinuities should be investigated in consideration of rock types, thermo-hydro-mechanical conditions, metamorphism, and restoration of shear resistance.

THE COMPARISON OF RELATIVE RELIABILITY ON BIAXIAL AND THREE POINT FLEXURAL STRENGTH TESTING METHODS OF LIGHT CURING COMPOSITE RESIN (광중합형 레진의 3점 굴곡 강도와 이축 굴곡 강도 측정 방법에 대한 상대적 신뢰도의 비교)

  • Seo, Deog-Gyu;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.1
    • /
    • pp.58-65
    • /
    • 2006
  • The possibility of applying a hi-axial flexure strength test on composite resin was examined using three point and hi-axial flexure strength tests to measure the strength of the light-cured resin and to compare the relative reliability using the Weibull modulus. The materials used in this study were light-curing restorative materials, $MICRONEW^{TM},\;RENEW^{(R)}$ (Bisco, Schaumburg, USA). The hi-axial flexure strength measurements used the piston-on-3-ball test according to the regulations of the International Organization for Standardization (ISO) 6872 and were divided into 6 groups, where the radius of the specimens were 12mm (radius connecting the 3-balls: 3.75mm), 16 mm(radius connecting the 3-balls: 5mm), and the thickness were 0.5mm, 1mm, 2mn for each radius. The hi-axial flexure strength of the $MICRONEW^{TM}\;and\;RENEW^{(R)}$ were higher than the three point flexure strength and the Weibull modulus value were also higher in all of the bi-axial flexure strength groups, indicating that the hi-axial strength test is relatively less affected by experimental error. In addition, the 2 mm thick specimens had the highest Weibull modulus values in the hi-axial flexure strength test, and the $MICRONEW^{TM}$ group showed no significant statistical difference (p>0.05). Besides the 2mm $MICRONEW^{TM}$ group, each group showed significant statistical differences (p<0.05) according to the thickness of the specimen and the radius connecting the 3-balls. The results indicate that for the 2mm group, the hi-axial flexure strength test is a more reliable testing method than the three point flexure strength test.

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

Effect of the type of resin cement on the fracture resistance of chairside CAD-CAM materials after aging

  • Laura Vitoria Rizzatto;Daniel Meneghetti;Marielle Di Domenico;Julia Cadorin Facenda;Katia Raquel Weber;Pedro Henrique Corazza;Marcia Borba
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.136-144
    • /
    • 2023
  • PURPOSE. The study objective was to evaluate the influence of the type of resin cement on the flexural strength and load to fracture of two chairside CADCAM materials after aging. MATERIALS AND METHODS. A polymer-infiltrated ceramic network (PICN) and a nanoceramic resin (RNC) were used to produce the specimens. Two types of dual-cure resin cements, a self-adhesive and a universal, were investigated. Bilayer specimens were produced (n = 10) and aged for 6 months in a humid environment before the biaxial flexural strength test (σf). Bonded specimens were subjected to a mechanical aging protocol (50 N, 2 Hz, 37℃ water, 500,000 cycles) before the compressive load test (Lf). σf and Lf data were analyzed using two-way ANOVA and Tukey tests (α = .05). Chi-square test was used to analyze the relationship between failure mode and experimental group (α = .05). RESULTS. The type of resin cement and the interaction between factors had no effect on the σf and Lf of the specimens, while the type of restorative material was significant. RNC had higher σf and Lf than PICN. There was a significant association among the type of cracks identified for specimens tested in Lf and the restorative material. CONCLUSION. The type of resin cement had no effect on the flexural strength and load to fracture of the two investigated CAD-CAM chairside materials after aging.

Interactive strut-and-tie-model for shear strength prediction of RC pile caps

  • Chetchotisak, Panatchai;Yindeesuk, Sukit;Teerawong, Jaruek
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2017
  • A new simple and practical strut-and-tie model (STM) for predicting the shear strength of RC pile caps is proposed in this paper. Two approaches are adopted to take into account the concrete softening effect. In the first approach, a concrete efficiency factor based on compression field theory is employed to determine the effective strength of a concrete strut, assumed to control the shear strength of the whole member. The second adopted Kupfer and Gerstle's biaxial failure criterion of concrete to derive the simple nominal shear strength of pile caps containing the interaction between strut and tie capacity. The validation of these two methods is investigated using 110 RC pile cap test results and other STMs available in the literature. It was found that the failure criterion approach appears to provide more accurate and consistent predictions, and hence is chosen to be the proposed STM. Finally, the predictions of the proposed STM are also compared with those obtained by using seven other STMs from codes of practice and the literature, and were found to give better accuracy and consistency.

Analysis of post-failure response of sands using a critical state micropolar plasticity model

  • Manzari, Majid T.;Yonten, Karma
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.187-206
    • /
    • 2011
  • Accurate estimations of pre-failure deformations and post-failure responses of geostructures require that the simulation tool possesses at least three main ingredients: 1) a constitutive model that is able to describe the macroscopic stress-strain-strength behavior of soils subjected to complex stress/strain paths over a wide range of confining pressures and densities, 2) an embedded length scale that accounts for the intricate physical phenomena that occur at the grain size scale in the soil, and 3) a computational platform that allows the analysis to be carried out beyond the development of an initially "contained" failure zone in the soil. In this paper, a two-scale micropolar plasticity model will be used to incorporate all these ingredients. The model is implemented in a finite element platform that is based on the mechanics of micropolar continua. Appropriate finite elements are developed to couple displacement, micro-rotations, and pore-water pressure in form of $u_n-{\phi}_m$ and $u_n-p_m-{\phi}_m$ (n > m) elements for analysis of dry and saturated soils. Performance of the model is assessed in a biaxial compression test on a slightly heterogeneous specimen of sand. The role of micropolar component of the model on capturing the post-failure response of the soil is demonstrated.

Development of 3-Dimensional Stress Measurement System by Bore hole Bottom Deformation Method (공저변형법에 의한 3차원응력측정 시스템의 개발)

  • Lee, Ki-Ha;Ishijima, Yoji;Fujii, Yoshiaki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.34-41
    • /
    • 2006
  • A 3-dimensional stress measurement system based on the bore hole bottom deformation method, which is one of the stress relief methods, was developed. A pilot bore hole is drilled from the bottom of a bore hole and the stress meter is inserted into the pilot bore hole in the method. The bore hole is advanced as an over coring and the deformations in seven directions are measured by cantilever type-sensors. Using the cantilever type-sensors saves time for hardening of glue. No cable connection between the stress meter and a data logger is necessary since a compact data logger is installed in the stress meter. The accuracy of the stress meter was confirmed by a biaxial test for a Shikotsu welded tuff block although in-situ tests have not been carried out yet.

  • PDF

Si 함유 DLC 필름의 탄성특성 평가

  • 정진원;조성진;이광렬;고대흥
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.136-136
    • /
    • 1999
  • 박막의 탄성특성을 평가하는 방법으로 nano-indentation, Brillouin light scattering measurement, ultrasonic surface wave measurement, bulge test, vibration membrane method 등 여러 가지가 제시되어 왔다. 최근에는 탄성특성을 평가할 수 있는 간단한 방법으로 기판 식각 기법을 이용한 freehang, bridge 방법이 제시되었다. 이중에서 bridge 방법은 간단한 식각 기법을 이용하여 얇은 박막에서도 탄성 특성을 평가할 수 있는 방법으로 제시되었다. 그러나 식각 과정에서 발생하는 patch 부분의 under-cut으로 인해 정확한 bridge의 길이를 측정할 수 없게 되어 오차가 발생하고 있다. 본 연구에서는 bridge 방법에서 발생하는 오차를 줄이기 위한 방법으로, patch 부분에 etch-stop을 제작해 줌으로서 식각 과정에서 발생하는 under-cut을 효과적으로 제거시켰다. Etch-stop은 2장의 mask를 align key를 이용하여 제작하였다. 먼저 산화막이 형성되어 있는 Si 기판위에 mask 1을 이용하여 patch 부분을 lithography 작업하고, 습식 식각 공정을 한 뒤 DLC 필름을 증착시킨다. 다음으로 mask 2를 이용하여 bridge pattern을 제작하고, DLC 필름을 증착시킨 후 lift-off 기술과 산화막 등방식각 공정을 통해 bridge를 제작하였다. 이렇게 제작된 bridge를 통해 필름이 기판에 부착되기 위해 필요한 변형률을 측정하고, 독립적으로 측정된 필름의 잔류응력과 함께 박막의 응력-변형률 관계식에 적용시켜 biaxial elastic modulus, E/(1-v)를 구할 수 있었다. Sidl 첨가된 DLC 필름은 rf-PACVD 장비를 이용하여 증착하였다. 이때 전극과 플라즈마 사이의 바이어스 음전압은 -400V로 합성압력은 10mTorr로 고정하였다. 사용한 반응가스는 벤젠(C6H6)과 희석된 실렌(SiH4:2H=10:90)이며, 희석된 실렌의 첨가량을 조절하여 필름 내에 함유된 Si의 양을 조절하였다. 각각의 조건에서 증착시간을 조절하여 필름의 두께를 조절하였다. 필름의 잔류응력은 압축잔류 응력에 의해 발생한 필름/기판 복합체의 곡률을 laser 반사법을 이용하여 측정하고, 이 결과를 Brenner 등에 의해 유도된 식을 대입하여 계산하였다.

  • PDF