• 제목/요약/키워드: Biased estimation

검색결과 124건 처리시간 0.024초

Enhancing Location Estimation and Reducing Computation using Adaptive Zone Based K-NNSS Algorithm

  • Song, Sung-Hak;Lee, Chang-Hoon;Park, Ju-Hyun;Koo, Kyo-Jun;Kim, Jong-Kook;Park, Jong-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권1호
    • /
    • pp.119-133
    • /
    • 2009
  • The purpose of this research is to accurately estimate the location of a device using the received signal strength indicator (RSSI) of IEEE 802.11 WLAN for location tracking in indoor environments. For the location estimation method, we adopted the calibration model. By applying the Adaptive Zone Based K-NNSS (AZ-NNSS) algorithm, which considers the velocity of devices, this paper presents a 9% improvement of accuracy compared to the existing K-NNSS-based research, with 37% of the K-NNSS computation load. The accuracy is further enhanced by using a Kalman filter; the improvement was about 24%. This research also shows the level of accuracy that can be achieved by replacing a subset of the calibration data with values computed by a numerical equation, and suggests a reasonable number of calibration points. In addition, we use both the mean error distance (MED) and hit ratio to evaluate the accuracy of location estimation, while avoiding a biased comparison.

  • PDF

경사진 노면에서의 차량의 종 속도 추정 (Vehicle Longitudinal Velocity Estimation on Inclined Road)

  • 이상엽;김인근;이동훈;허건수
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.14-19
    • /
    • 2012
  • On-line and real-time information of the longitudinal velocity is the essential factor for the Advanced Vehicle Control Systems such as ABS(Anti-lock Brake System), TCS(Traction Control System), ESC (Electronic Stability Control) etc. However, the longitudinal velocity cannot be easily measured or calculated during braking maneuvering. A new algorithm is presented for the estimation of the longitudinal velocity with the measurements of the vehicle longitudinal/lateral acceleration, steering angle and yaw rate. The algorithm is designed utilizing the Extended Kalman Filter based on the 3 degree of freedom vehicle model. In order to compensate for the biased sensor signal on the inclined road, the inclined angle is also estimated. The performance of the proposed estimation algorithm is evaluated in field tests.

Fractal Depth Map Sequence Coding Algorithm with Motion-vector-field-based Motion Estimation

  • Zhu, Shiping;Zhao, Dongyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.242-259
    • /
    • 2015
  • Three-dimensional video coding is one of the main challenges restricting the widespread applications of 3D video and free viewpoint video. In this paper, a novel fractal coding algorithm with motion-vector-field-based motion estimation for depth map sequence is proposed. We firstly add pre-search restriction to rule the improper domain blocks out of the matching search process so that the number of blocks involved in the search process can be restricted to a smaller size. Some improvements for motion estimation including initial search point prediction, threshold transition condition and early termination condition are made based on the feature of fractal coding. The motion-vector-field-based adaptive hexagon search algorithm on the basis of center-biased distribution characteristics of depth motion vector is proposed to accelerate the search. Experimental results show that the proposed algorithm can reach optimum levels of quality and save the coding time. The PSNR of synthesized view is increased by 0.56 dB with 36.97% bit rate decrease on average compared with H.264 Full Search. And the depth encoding time is saved by up to 66.47%. Moreover, the proposed fractal depth map sequence codec outperforms the recent alternative codecs by improving the H.264/AVC, especially in much bitrate saving and encoding time reduction.

편향된 다양체 학습 기반 시점 변화에 강인한 인체 포즈 추정 (View-Invariant Body Pose Estimation based on Biased Manifold Learning)

  • 허동철;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.960-966
    • /
    • 2009
  • 다양체는 고차원 표본 데이터들 사이의 관계를 표현하기 위해 저차원 공간에서 생성된 구조로서 고차원 데이터인 영상과 3차원 인체 구성 데이터를 처리하는데 많이 사용되고 있다. 다양체 학습은 이러한 다양체를 생성하는 과정을 말한다. 그러나 다양체 학습을 이용한 포즈 추정은 학습하지 못한 실루엣 변화에 취약하다. 실루엣 변화는 2차원 영상에서 시점 변화, 포즈 변화, 사람 변화, 거리 변화, 잡영에 의해 발생되며, 이러한 변화를 하나의 다양체로 학습하기란 어렵다. 본 논문에서는 실루엣 변화를 유발하는 문제중 하나인 시점 변화에 대한 문제를 해결하고자 한다. 종래에 시점 변화에 상관 없이 포즈를 추정하는 방법에서는, 각 시점마다 다양체를 가지거나 사상 함수에서 시점에 관련한 요소들을 분리하석 별도의 다양체로 학습한다. 하지만 이러한 방법들은 복잡하고, 추정 과정에서 어떠한 시점의 다양체를통해 포즈를 추정할지 판단을 요구하며, 비교사 학습으로 인해 실루엣과 대응되는 3차원 인체 구성을 지정하기 어렵다. 본 논문에서는 시점 다양체, 포즈 다양체, 인체 구성 다양체를 편향된 다양체로 학습하여 사용하는 방법을 제안한다. 그리고 영상과 시점 다양체, 영상과 포즈 다양체, 인체 구성과 인체 구성 다양체, 포즈 다양체와 인체 구성 다양체 간에 사상 함수를 학습한다. 실험에서는 학습된 다양체와 사상 함수를 이용하여 24개의 시점에서 강인한 포즈 추정 결과를 보여주고 있다.

The Precision Validation of the Precise Baseline Determination for Satellite Formation

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.63-70
    • /
    • 2011
  • The needs for satellite formation flying are gradually increasing to perform the advanced space missions in remote sensing and observation of the space or Earth. Formation flying in low Earth orbit can perform the scientific missions that cannot be realized with a single spacecraft. One of the various techniques of satellite formation flying is the determination of the precise baselines between the satellites within the formation, which has to be in company with the precision validation. In this paper, the baseline of Gravity Recovery and Climate Experiment (GRACE) A and B was determined with the real global positioning system (GPS) measurements of GRACE satellites. And baseline precision was validated with the batch and sequential processing methods using K/Ka-band ranging system (KBR) biased range measurements. Because the proposed sequential method validate the baseline precision, removing the KBR bias with the epoch difference instead of its estimation, the validating data (KBR biased range) are independent of the data validated (GPS-baseline) and this method can be applied to the real-time precision validation. The result of sequential precision validation was 1.5~3.0 mm which is similar to the batch precision validation.

관측 불가능한 바이어스가 있는 시스템의 칼만필터 추정특성 (Estimation Properties of Kalman Filter for the System with Unobservable Bias)

  • 송기원;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.874-881
    • /
    • 2001
  • By showing the existence of the ARE solution and the convergence property of the DRE solution, this paper proves that a Kalman filter for the linear system with the unobservable bias is stable. It is also shown that the Kalman filter has a biased steady state estimation error whose covariance is affected mainly by the unobservable bias. Finally, the results are illustrated through a 2nd order system example including the inertial navigation system.

  • PDF

Linear Input/output Data-based Predictive Control with Integral Property

  • Song, In-Hyoup;Yoo, Kee-Youn;Park, Myung-Jung;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.101.5-101
    • /
    • 2001
  • A linear input/output data-based predictive control with integral action is developed. The control input is obtained directly from the input/output data in a single step. However, the state estimation in subspace identification gives a biased estimate and there is model mismatch when the controller is applied to a nonlinear process. To overcome such difficulties, we add integral action to a linear input/output data-based predictive controller by augmenting the integrated white noise disturbance model and use each of best linear unbiased estimation(BLUE) filter and Kalman filter as a stochastic observer for the unmeasured disturbance. When applied to a continuous styrene polymerization reactor the proposed controller demonstrates.

  • PDF

Principal Component Regression by Principal Component Selection

  • Lee, Hosung;Park, Yun Mi;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • 제22권2호
    • /
    • pp.173-180
    • /
    • 2015
  • We propose a selection procedure of principal components in principal component regression. Our method selects principal components using variable selection procedures instead of a small subset of major principal components in principal component regression. Our procedure consists of two steps to improve estimation and prediction. First, we reduce the number of principal components using the conventional principal component regression to yield the set of candidate principal components and then select principal components among the candidate set using sparse regression techniques. The performance of our proposals is demonstrated numerically and compared with the typical dimension reduction approaches (including principal component regression and partial least square regression) using synthetic and real datasets.

Bayesian Modeling of Random Effects Covariance Matrix for Generalized Linear Mixed Models

  • Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제20권3호
    • /
    • pp.235-240
    • /
    • 2013
  • Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal categorical data when the subject-specific effects is of interest. In GLMMs, the structure of the random effects covariance matrix is important for the estimation of fixed effects and to explain subject and time variations. The estimation of the matrix is not simple because of the high dimension and the positive definiteness; subsequently, we practically use the simple structure of the covariance matrix such as AR(1). However, this strong assumption can result in biased estimates of the fixed effects. In this paper, we introduce Bayesian modeling approaches for the random effects covariance matrix using a modified Cholesky decomposition. The modified Cholesky decomposition approach has been used to explain a heterogenous random effects covariance matrix and the subsequent estimated covariance matrix will be positive definite. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using these methods.

Length-biased Rayleigh distribution: reliability analysis, estimation of the parameter, and applications

  • Kayid, M.;Alshingiti, Arwa M.;Aldossary, H.
    • International Journal of Reliability and Applications
    • /
    • 제14권1호
    • /
    • pp.27-39
    • /
    • 2013
  • In this article, a new model based on the Rayleigh distribution is introduced. This model is useful and practical in physics, reliability, and life testing. The statistical and reliability properties of this model are presented, including moments, the hazard rate, the reversed hazard rate, and mean residual life functions, among others. In addition, it is shown that the distributions of the new model are ordered regarding the strongest likelihood ratio ordering. Four estimating methods, namely, method of moment, maximum likelihood method, Bayes estimation, and uniformly minimum variance unbiased, are used to estimate the parameters of this model. Simulation is used to calculate the estimates and to study their properties. Finally, the appropriateness of this model for real data sets is shown by using the chi-square goodness of fit test and the Kolmogorov-Smirnov statistic.

  • PDF