• Title/Summary/Keyword: Bias Voltage Dependence

Search Result 74, Processing Time 0.034 seconds

Threshold Voltage Dependence on Bias for FinFET using Analytical Potential Model

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.107-111
    • /
    • 2010
  • This paper has presented the dependence of the threshold voltage on back gate bias and drain voltage for FinFET. The FinFET has three gates such as the front gate, side and back gate. Threshold voltage is defined as the front gate bias when drain current is 1 micro ampere as the onset of the turn-on condition. In this paper threshold voltage is investigated into the analytical potential model derived from three dimensional Poisson's equation with the variation of the back gate bias and drain voltage. The threshold voltage of a transistor is one of the key parameters in the design of CMOS circuits. The threshold voltage, which described the degree of short channel effects, has been extensively investigated. As known from the down scaling rules, the threshold voltage has been presented in the case that drain voltage is the 1.0V above, which is set as the maximum supply voltage, and the drain induced barrier lowing(DIBL), drain bias dependent threshold voltage, is obtained using this model.

Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites

  • Chen, Lei;Luo, Yulin
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.347-352
    • /
    • 2015
  • The magnetoelectric (ME) characteristics for Terfenol-D/PZT laminate composite dependence on bias magnetic field is investigated. At low frequency, ME response is determined by the piezomagnetic coefficient $d_{33,m}$ and the elastic compliance $s_{33}^H$ of magnetostrictive material, $d_{33,m}$ and $s_{33}^H$ for Terfenol-D are inherently nonlinear and dependent on $H_{dc}$, leading to the influence of $H_{dc}$ on low-frequency ME voltage coefficient. At resonance, the mechanical quality factor $Q_m$ dependences on $H_{dc}$ results in the differences between the low-frequency and resonant ME voltage coefficient with $H_{dc}$. In terms of ${\Delta}E$ effect, the resonant frequency shift is derived with respect to the bias magnetic field. Considering the nonlinear effect of magnetostrictive material and $Q_m$ dependence on $H_{dc}$c, it predicts the low-frequency and resonant ME voltage coefficients as a function of the dc bias magnetic field. A good agreement between the theoretical results and experimental data is obtained and it is found that ME characteristics dependence on $H_{dc}$ are mainly influenced by the nonlinear effect of magnetostrictive material.

Bias-voltage-dependent dynamic behavior of a STN LCD (바이어스 전압에 따른 STN LCD의 스위칭 특성)

  • 전인수;정태혁;윤태훈;김재창
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.167-173
    • /
    • 1996
  • In this paper, the voltage dependence of the dynamic characteristics in a STN LCD is investigated. From the measurement of the switching times for four STN LC cells under various applied voltages, it was found that the analytical equation for the switching times has a fixed proportional constant irrespective of sample parameters. We also investigated the dependence of the switching times on the bias voltage. Our theoretical results were in good agreement with above experimental results.

  • PDF

Perpendicular Spin-transfer Torque in Asymmetric Magnetic Tunnel Junctions: Material Parameter Dependence (비대칭 자기터널접합에서의 수직 스핀 전달 토크: 물질 변수에 대한 의존성)

  • Han, Jae-Ho;Lee, Hyun-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.52-55
    • /
    • 2011
  • Spin-transfer torque is a useful tool to control the magnetic state in nanostructures. In magnetic tunnel junctions, the spin-transfer torque has two components, the in-plane spin torque and the perpendicular spin torque. While properties of the in-plane spin-transfer torque are relatively well understood, properties of the perpendicular spin-transfer torque still remain controversial. A recent experiment demonstrated that in asymmetric magnetic tunnel junctions, the bias voltage dependence of the perpendicular spin-transfer torque contains both linear and quadratic terms in the bias. However it still remains unexplored how the bias voltage dependence changes as a function of material parameters. In this paper, we systematically investigate the perpendicular spin-transfer torque in asymmetric magnetic tunnel junction by varying spin splitting energy, work function difference, and Fermi energy of the ferromagnetic metal leads.

Substrate Bias Voltage Dependence of Electrical Properties for ZnO:Al Film by DC Magnetron Sputtering (Bias 전압에 따른 ZnO:Al 투명전도막의 전기적 특성)

  • 박강일;김병섭;임동건;이수호;곽동주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.738-746
    • /
    • 2004
  • Recently zinc oxide(ZnO) has emerged as one of the most promising transparent conducting films with a strong demand of low cost and high performance optoelectronic devices, ZnO film has many advantages such as high chemical and mechanical stabilities, and abundance in nature. In this paper, in order to obtain the excellent transparent conducting film with low resistivity and high optical transmittance for Plasma Display Pannel(PDP), aluminium doped zinc oxide films were deposited on Corning glass substrate by dc magnetron sputtering method. The effects of the discharge power and doping amounts of $Al_2$$O_3$ on the electrical and optical properties were investigated experimentally. Particularly in order to lower the electrical resistivity, positive and negative bias voltages were applied on the substrate, and the effect of bias voltage on the electrical properties of ZnO:Al thin film were also studied and discussed. Films with lowest resistivity of $4.3 \times 10 ^{-4} \Omega-cm$ and good transmittance of 91.46 % have been achieved for the films deposited at 1 mtorr, $400^{\circ}C$, 40 W, Al content of 2 wt% with a substrate bias of +30 V for about 800 nm in film thickness.

Satistical Analysis of SiO2 Contact Hole Etching in a Magnetically Enhanced Reactive Ion Etching Reactor

  • Liu, Chunli;Shrauner, B.
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.132-137
    • /
    • 2010
  • Plasma etching of $SiO_2$ contact holes was statistically analyzed by a fractional factorial experimental design. The analysis revealed the dependence of the etch rate and DC self-bias voltage on the input factors of the magnetically enhanced reactive ion etching reactor, including gas pressure, magnetic field, and the gas flow rates of $CHF_3$, $CF_4$, and Ar. Empirical models of the DC self-bias voltage and etch rate were obtained. The DC self-bias voltage was found to be determined mainly by the operating pressure and the magnetic field, and the etch rate was related mainly to the pressure and the flow rates of Ar and $CHF_3$.

A study on the impedance effect of nonvolatile memory devices (비휘발성 기억소자의 저항효과에 관한 연구)

  • 강창수
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.626-632
    • /
    • 1995
  • In this paper, The effect of the impedances in SNOSFET's memory devices has been developed. The effect of source and drain impedances measured by means of two bias resistances - field effect bias resistance by inner region, external bias resistance. The effect of the impedances by source and drain resistance shows the dependence of the function of voltages applied to the gate. It shows the differences of change in source drain voltage by means of low conductance state and high conductance state. It shows the delay of threshold voltages. The delay time of low conductance state and high conductance state by the impedances effect shows 3[.mu.sec] and 1[.mu.sec] respectively.

  • PDF

Current-voltage Characteristics of Ceramics with Positive Temperature Coefficient of Resistance

  • Li, Yong-Gen;Cho, Sung-Gurl
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.921-924
    • /
    • 2003
  • A current-voltage relation for Positive Temperature Coefficient of Resistance (PTCR) ceramic was derived and compared with the experimental data. The new current-voltage relation was developed based on Heywangs double Schottky barrier model and a bias distribution across the grain boundary. The voltage limitation V < 4${\Phi}$$\sub$b/ suggested by Heywang is no longer necessary in the new expression for the voltage dependence of the resistance. The pulsed voltages were applied to the PTCR ceramic specimen in order to avoid possible temperature variation during the measurement.

Effect of Insertion of Hf layer in Al oxide tunnel barrier on the properties of magnetic tunnel junctions (알루미늄 산화물 절연막에 하프늄의 첨가가 자기터널접합의 특성에 미치는 영향)

  • Lim, W.C.;Bae, J.Y.;Lee, T.D.;Park, B.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • We have investigated the effect of Hf insertion in the Al oxide tunnel barrier on the properties of magnetic tunnel junctions (MTJs). MTJs with Hf inserted barrier show the higher tunnel magnetoresistance (TMR) ratio and less temperature and bias voltage dependence of TMR than MTJs with a conventional Al$_2$O$_3$ barrier. The enhancement of TMR ratio and the reduction of the temperature and bias voltage dependence might be due to the reduction of defects in the barrier. Al-Hf oxide was formed by depositing Al and Hf simultaneously, and oxidizing the compound films. The TMR ratio of 36% was almost the same value as that with Hf inserted barrier. This implies that the inserted Hf layers mixed with Al layers during deposition or oxidation, and they might form Al Hf oxide barriers. This compound Al Hf oxide formation may be responsible to reduction of defect concentration which enhanced the TMR ratio and reduced temperature and bias-voltage dependence.

Frequency Dependence of OLED Voltage Shift Degradation

  • Kim, Hyun-Jong;Kim, Su-Hwan;Chang, Seung-Wook;Lee, Dong-Kyu;Jeong, Dong-Seob;Chung, Ho-Kyoon;Hong, Yong-Taek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1108-1111
    • /
    • 2007
  • OLED driving voltage shift can reduce the OLED display lifetime, especially for digitally driven AMOLED. By operating OLED at high frequency, we were able to suppress OLED voltage shift degradation, expecting improved AMOLED lifetime. We describe frequency dependence of voltage shift obtained from bias stress test of OLED.

  • PDF