• Title/Summary/Keyword: Bias Satellite

Search Result 244, Processing Time 0.041 seconds

Orbit Determination Accuracy Improvement for Geostationary Satellite with Single Station Antenna Tracking Data

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Hae-Yeon;Kim, Hae-Dong;Kim, Jae-Hoon
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.774-782
    • /
    • 2008
  • An operational orbit determination (OD) and prediction system for the geostationary Communication, Ocean, and Meteorological Satellite (COMS) mission requires accurate satellite positioning knowledge to accomplish image navigation registration on the ground. Ranging and tracking data from a single ground station is used for COMS OD in normal operation. However, the orbital longitude of the COMS is so close to that of satellite tracking sites that geometric singularity affects observability. A method to solve the azimuth bias of a single station in singularity is to periodically apply an estimated azimuth bias using the ranging and tracking data of two stations. Velocity increments of a wheel off-loading maneuver which is performed twice a day are fixed by planned values without considering maneuver efficiency during OD. Using only single-station data with the correction of the azimuth bias, OD can achieve three-sigma position accuracy on the order of 1.5 km root-sum-square.

  • PDF

Evolution of Bias-corrected Satellite Rainfall Estimation for Drought Monitoring System in South Korea (한반도지역 가뭄 모니터링 활용을 위한 위성강우 편의보정)

  • Park, Jihoon;Jung, Imgook;Park, Kyungwon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.997-1007
    • /
    • 2018
  • Drought monitoring is the important system for disasters by climate change. To perform this, it is necessary to measure the precipitation based on satellite rainfall estimation. The data developed in this study provides two kinds of satellite data (raw satellite data and bias-corrected satellite data). The spatial resolution of satellite data is 10 km and the temporal resolution is 1 day. South Korea was selected as the target area, and the original satellite data was constructed, and the bias-correction method was validated. The raw satellite data was constructed using TRMM TMPA and GPM IMERG products. The GRA-IDW was selected for bias-correction method. The correlation coefficient of 0.775 between 1998 and 2017 is relatively high, and TRMM TMPA and GPM IMERG 10 km daily rainfall correlation coefficients are 0.776 and 0.753, respectively. The BIAS values were found to overestimate the raw satellite data over observed data. By using the technique developed in this study, it is possible to provide reliable drought monitoring to Korean peninsula watershed. It is also a basic data for overseas projects including the un-gaged regions. It is expected that reliable gridded data for end users of drought management.

Bias Correction of Satellite-Based Precipitation Using Convolutional Neural Network

  • Le, Xuan-Hien;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.120-120
    • /
    • 2020
  • Spatial precipitation data is one of the essential components in modeling hydrological problems. The estimation of these data has achieved significant achievements own to the recent advances in remote sensing technology. However, there are still gaps between the satellite-derived rainfall data and observed data due to the significant dependence of rainfall on spatial and temporal characteristics. An effective approach based on the Convolutional Neural Network (CNN) model to correct the satellite-derived rainfall data is proposed in this study. The Mekong River basin, one of the largest river system in the world, was selected as a case study. The two gridded precipitation data sets with a spatial resolution of 0.25 degrees used in the CNN model are APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). In particular, PERSIANN-CDR data is exploited as satellite-based precipitation data and APHRODITE data is considered as observed rainfall data. In addition to developing a CNN model to correct the satellite-based rain data, another statistical method based on standard deviations for precipitation bias correction was also mentioned in this study. Estimated results indicate that the CNN model illustrates better performance both in spatial and temporal correlation when compared to the standard deviation method. The finding of this study indicated that the CNN model could produce reliable estimates for the gridded precipitation bias correction problem.

  • PDF

Development of Pre-Processing and Bias Correction Modules for AMSU-A Satellite Data in the KIAPS Observation Processing System (KIAPS 관측자료 처리시스템에서의 AMSU-A 위성자료 초기 전처리와 편향보정 모듈 개발)

  • Lee, Sihye;Kim, Ju-Hye;Kang, Jeon-Ho;Chun, Hyoung-Wook
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.453-470
    • /
    • 2013
  • As a part of the KIAPS Observation Processing System (KOPS), we have developed the modules of satellite radiance data pre-processing and quality control, which include observation operators to interpolate model state variables into radiances in observation space. AMSU-A (Advanced Microwave Sounding Unit-A) level-1d radiance data have been extracted using the BUFR (Binary Universal Form for the Representation of meteorological data) decoder and a first guess has been calculated with RTTOV (Radiative Transfer for TIROS Operational Vertical Sounder) version 10.2. For initial quality checks, the pixels contaminated by large amounts of cloud liquid water, heavy precipitation, and sea ice have been removed. Channels for assimilation, rejection, or monitoring have been respectively selected for different surface types since the errors from the skin temperature are caused by inaccurate surface emissivity. Correcting the bias caused by errors in the instruments and radiative transfer model is crucial in radiance data pre-processing. We have developed bias correction modules in two steps based on 30-day innovation statistics (observed radiance minus background; O-B). The scan bias correction has been calculated individually for each channel, satellite, and scan position. Then a multiple linear regression of the scan-bias-corrected innovations with several predictors has been employed to correct the airmass bias.

Satellite-based Rainfall for Water Resources Application

  • Supattra, Visessri;Piyatida, Ruangrassamee;Teerawat, Ramindra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.188-188
    • /
    • 2017
  • Rainfall is an important input to hydrological models. The accuracy of hydrological studies for water resources and floods management depend primarily on the estimation of rainfall. Thailand is among the countries that have regularly affected by floods. Flood forecasting and warning are necessary to prevent or mitigate loss and damage. Merging near real time satellite-based precipitation estimation with relatively high spatial and temporal resolutions to ground gauged precipitation data could contribute to reducing uncertainty and increasing efficiency for flood forecasting application. This study tested the applicability of satellite-based rainfall for water resources management and flood forecasting. The objectives of the study are to assess uncertainty associated with satellite-based rainfall estimation, to perform bias correction for satellite-based rainfall products, and to evaluate the performance of the bias-corrected rainfall data for the prediction of flood events. This study was conducted using a case study of Thai catchments including the Chao Phraya, northeastern (Chi and Mun catchments), and the eastern catchments for the period of 2006-2015. Data used in the study included daily rainfall from ground gauges, telegauges, and near real time satellite-based rainfall products from TRMM, GSMaP and PERSIANN CCS. Uncertainty in satellite-based precipitation estimation was assessed using a set of indicators describing the capability to detect rainfall event and efficiency to capture rainfall pattern and amount. The results suggested that TRMM, GSMaP and PERSIANN CCS are potentially able to improve flood forecast especially after the process of bias correction. Recommendations for further study include extending the scope of the study from regional to national level, testing the model at finer spatial and temporal resolutions and assessing other bias correction methods.

  • PDF

Fusion of Aerosol Optical Depth from the GOCI and the AHI Observations (GOCI와 AHI 자료를 활용한 에어로졸 광학두께 합성장 산출 연구)

  • Kang, Hyeongwoo;Choi, Wonei;Park, Jeonghyun;Kim, Serin;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.861-870
    • /
    • 2021
  • In this study, fused Aerosol Optical Depth (AOD) data were produced using AOD products from the Geostationary Ocean Color Imager (GOCI) onboard Communication, Oceanography and Meteorology Satellite (COMS)satellite and the Advanced Himawari Imager (AHI) onboard Himawari-8. Since the spatial resolution and the coordinate system between the satellite sensors are different, a preprocessing was first preceded. After that, using the level 1.5 AOD dataset of AErosol RObotic NETwork (AERONET), which is ground-based observation, correlations and trends between each satellite AOD and AERONET AOD were utilized to produce more accurate satellite AOD data than the originalsatellite AODs. The fused AOD were found to be more accurate than the originalsatellite AODs. Root Mean Square Error (RMSE) and mean bias of the fused AODs were calculated to be 0.13 and 0.05, respectively. We also compared errors of the fused AODs against those of the original GOCI AOD (RMSE: 0.15, mean bias: 0.11) and the original AHI AOD (RMSE: 0.15, mean bias: 0.05). It was confirmed that the fused AODs have betterspatial coverage than the original AODsin areas where there are no observations due to the presence of cloud from a single satellite.

Application of Convolutional Neural Networks (CNN) for Bias Correction of Satellite Precipitation Products (SPPs) in the Amazon River Basin

  • Alena Gonzalez Bevacqua;Xuan-Hien Le;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.159-159
    • /
    • 2023
  • The Amazon River basin is one of the largest basins in the world, and its ecosystem is vital for biodiversity, hydrology, and climate regulation. Thus, understanding the hydrometeorological process is essential to the maintenance of the Amazon River basin. However, it is still tricky to monitor the Amazon River basin because of its size and the low density of the monitoring gauge network. To solve those issues, remote sensing products have been largely used. Yet, those products have some limitations. Therefore, this study aims to do bias corrections to improve the accuracy of Satellite Precipitation Products (SPPs) in the Amazon River basin. We use 331 rainfall stations for the observed data and two daily satellite precipitation gridded datasets (CHIRPS, TRMM). Due to the limitation of the observed data, the period of analysis was set from 1st January 1990 to 31st December 2010. The observed data were interpolated to have the same resolution as the SPPs data using the IDW method. For bias correction, we use convolution neural networks (CNN) combined with an autoencoder architecture (ConvAE). To evaluate the bias correction performance, we used some statistical indicators such as NSE, RMSE, and MAD. Hence, those results can increase the quality of precipitation data in the Amazon River basin, improving its monitoring and management.

  • PDF

Analysis of bias correction performance of satellite-derived precipitation products by deep learning model

  • Le, Xuan-Hien;Nguyen, Giang V.;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.148-148
    • /
    • 2022
  • Spatiotemporal precipitation data is one of the primary quantities in hydrological as well as climatological studies. Despite the fact that the estimation of these data has made considerable progress owing to advances in remote sensing, the discrepancy between satellite-derived precipitation product (SPP) data and observed data is still remarkable. This study aims to propose an effective deep learning model (DLM) for bias correction of SPPs. In which TRMM (The Tropical Rainfall Measuring Mission), CMORPH (CPC Morphing technique), and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) are three SPPs with a spatial resolution of 0.25o exploited for bias correction, and APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data is used as a benchmark to evaluate the effectiveness of DLM. We selected the Mekong River Basin as a case study area because it is one of the largest watersheds in the world and spans many countries. The adjusted dataset has demonstrated an impressive performance of DLM in bias correction of SPPs in terms of both spatial and temporal evaluation. The findings of this study indicate that DLM can generate reliable estimates for the gridded satellite-based precipitation bias correction.

  • PDF

Error Analysis of Inter-Frequency Bias Estimation in Global Navigation Satellite System Signals (위성항법 신호 이중주파수간 편이 추정오차 분석)

  • Kim, Jeongrae;Noh, Jeong Ho;Lee, Hyung Keun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • Global navigation satellite systems (GNSS) use dual frequency signals to remove ionosphere delay effect. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual frequencies due to differential signal delays in receiving each frequency codes. The IFB degrades pseudo-range and ionosphere delay accuracies, and they must be accurately estimated. Simultaneous estimation of ionosphere map and IFB is applied in order to analyze the IFB estimation accuracy and variability. GPS network data in Korea is used to compute each receiver's IFB. Accuracy changes due to ionosphere model changes is analyzed and the effect of external GNSS satellite IFB on the receiver IFB is analyzed.

Analysis of Induced Magnetic Field Bias in LEO Satellites Using Orbital Geometry-based Bias Estimation Algorithm (궤도 기하학 기반 바이어스 추정기법을 이용한 저궤도 위성의 유도자기장 바이어스 분석)

  • Lee, S.H.;Yong, K.L.;Choi, H.T.;Oh, S.H.;Yim, J.R.;Kim, Y.B.;Seo, H.H.;Lee, H.J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1126-1131
    • /
    • 2008
  • This paper applies the Orbital Geometry-based Bias Estimation Algorithm to the magnetometer measurement data of KOMPSAT-1 and 2 and analyzes the induced magnetic field bias caused by the solar panels and electronics boxes in spacecraft bus. This paper reveals that the estimation and correction of the induced magnetic field bias copes with the aging process of magnetometer and makes it possible to carry on the satellite mission by extending its lifetime.