• Title/Summary/Keyword: BiTeSe

Search Result 84, Processing Time 0.022 seconds

Thermoelectric Properties of the 0.05wt% $SbI_3$-Doped n-Type $Bi_2({Te_{0.95}}{Se_{0.05}})_3$ Alloy with Variation of the Annealing Time (0.05wt% $SbI_3$를 첨가한 n형 $Bi_2({Te_{0.95}}{Se_{0.05}})_3$ 가압소결체의 열처리 시간에 따른 열전특성)

  • Lee, Sun-Kyong;Oh, Tae-Sung;Hyun, Dow-Bin
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.257-263
    • /
    • 2000
  • Thermoelectric properties of the 0.05wt% $SbI_3$-doped n-type $Bi_2(Te_{0.95}Se_{0.05})_3$ alloy, prepared by melting/grinding and hot pressing, were investigated with variation of the annealing time up to 36 hours. The electron concentration of the 0.05wt% SbI$_3$-doped n-type $Bi_2(Te_{0.95}Se_{0.05})_3$ alloy decreased with increasing the annealing time. The figure-of-merit of the 0.05wt% $SbI_3$-doped n-type $Bi_2(Te_{0.95}Se_{0.05})_3$ alloy was improved from $2.1{\times}10^{-3}/K$ to $2.35{\times}10^{-3}/K$ by annealing at $500^{\circ}C$ for 3 hours. When annealed longer than 12 hours, however, the figure-of-merit decreased substantially due to the increase of the electrical resistivity.

  • PDF

Experimental fabrication and analysis of thermoelectric devices (복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구)

  • 성만영;송대식;배원일
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

Thermoelectric Properties of n-type 90%$Bi_{2}Te_{3}+10% Bi_{2}Se_{3}$ Materials Prepared by Rapid Solidification Process and Hot Pressing (급속응고기술에 의한 n-type 90%$Bi_{2}Te_{3}+10% Bi_{2}Se_{3}$ 열간압축제의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.253-259
    • /
    • 1996
  • The efficiency of thermoelectric devices for different applications is known to depend on the thermoelectric effectiveness of the material which tends to grow with the increase of its chemical homogeneity. Thus an important goal for thermal devices is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification (melt spinning method) followed by hot pressing was investigated to produce homogeneous material. Characteristics of the material were examined with HRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as dopant ${CdCl}_{2}$ quantity and hot pressing temperature. Quenched ribbons are very brittle and consist of homogeneous $Bi_2Te_3$, ${Bi}_{2}{Se}_{3}$ solid solutions. When the process parameters were optimized, the maximum figure of merit was 2.038$\times$$10^{-3}K^{-4}. The bending strength of the material hot pressed at 50$0^{\circ}C$ was 8.2 kgf/${mm}^2$.

  • PDF

Complex Chalcogenides as Thermoelectric Materials: A Solid State Chemistry Approach

  • 정덕영;Lykourgos Iordanidis;최경신;Mercouri G. Kanatzidis
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1283-1293
    • /
    • 1998
  • A solid state chemical approach to discover new mateials with enhanced thermoelectric properties is described. The aim is to construct three-dimensional bismuth chalcogenide framework structures which contain tonically interacting alkali or alkaline earth atoms. The alkali atoms tend to have soft "rattling" type phonon modes which result in very low thermal conductivity in these materials. Another desirable feature in this class of compounds is the low crystal symmetry and narrow band-gaps. Several promising materials such as BaBiTe3, KBi6.33S10, K2Bi8S13, β-K2Bi8Se13, K2.5Bi8.5Se14, Ba4Bi6Se13, Eu2Pb2Bi6Se13, Al1+xPb4-2xSb7+xSe15 (A=K, Rb), and CsBi4Te6 are described.

Thermoelectric properties of $(Bi,;Sb)_2;(Te,;Se)_3$-based thin films and their applicability to temperature sensors ($(Bi,;Sb)_2;(Te,;Se)_3$계 박막의 열전 특성 및 온도 센서로의 응용)

  • 한승욱;김일호;이동희
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.69-76
    • /
    • 1997
  • P-type ($Bi_{0.5}Sb_{1.5}Te_3$) and n-type ($Bi_2Te_{2.4} Se_{0.6}$) thermoelectric thin film were deposited on glass and Teflon substrates by the flash evaporation technique. The changes in thermoelectric properties, such as Seebeck coefficient, electrical conductivity, carrier concentration, carrier mobility, thermal conductivity, and figure of merit, were investigated as a function of film thickness and annealing condition. Figures of merit of the thin films annealed at 473 K for 1 hour were improved to be $1.3{\times}10^{-3}K^{-1}$ for p-type and $0.3{\times}10^{-3}K^{-1}$ for n-type, and they were almost independent of film thickness. Temperature sensors were fabricated from the thin films having the above mentioned properties. And thermo-emf, sensitivity, and time constant of the sensors were measured to evaluate their characteristics for temperature sensors. Thin film sensors deposited on Teflon substrates showed better performance than those on glass substrates, and their sensitivity and time constant were 2.91 V/W and 28.2 sec respectively for the sensor of leg width 1 mm$\times$length 16 mm.

  • PDF

Preparation of n-type Bi-Te-Se-based Thermoelectric Materials with Improved Reliability via hot Extrusion Process (열간압출을 이용한 고신뢰성 n형 Bi-Te-Se계 열전소자 제조)

  • Hwang, Jeong Yun;Kim, Yong-Nam;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • Herein we developed the hot extrusion technology to prepare n-type Bi-Te-Se-based thermoelectric materials with high reliability. Starting ingot was fabricated via melt-solidification process, then pulverized it into powders (${\sim}30{\mu}m$) by using high energy ball milling. By optimization of mold design and temperature-pressure conditions for hot extrusion, dense extrudate of 1.8 mm in diameter with high 00l orientation could be obtained from disc-shape compacted powders (20 mm in diameter). High power factor ${\sim}4.1mW/mK^2$ and enhanced mechanical strength ~50 MPa were simultaneously observed at 300 K.

Electrical and Thermoelectric Properties of $\textrm{SbI}_{3}$-doped 85% $\textrm{Bi}_{2}\textrm{Te}_{3}$-15% $\textrm{Bi}_{2}\textrm{Se}_{3}$ Thermoelectric Semiconductor ($\textrm{SbI}_{3}$를 첨가한 85% $\textrm{Bi}_{2}\textrm{Te}_{3}$-15% $\textrm{Bi}_{2}\textrm{Se}_{3}$ 열반도체의 전기적 특성과 열전 특성)

  • Hyeon, Do-Bin;Hwang, Jong-Seung;O, Tae-Seong;Yu, Byeong-Cheol;Hwang, Chang-Won
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.413-418
    • /
    • 1998
  • Electrical and Thermoelectric Properties of$ SbI_{3}$-doped 85% 85% $BiTe_{2}$$Se_{3}$ 단결정에서 전하 이동에 대한 살란인자는 0.1이었으며, 전자이동도와 정공이동도의 비($\mu_{e}$ /$\mu_{h}$ )는 1.45이었다. $SbI_{3}$의 첨가량이 증가할수록 전자 농도의 증가로 Seebek 계수와 전기비저항이 감소하며, Seebeck 계수와 전기비저항이 최대값을 나타내는 온도가 고온으로 이동하였다. $SbI_{3}$를 첨가한 85%$Bi_{2}$$Te_{3}$단결정에서 성능지수의 최대값은 $SbI_{3}$를 0.1 wt%첨가한 조성에서 $2.0 x 10^{-3}$ K이었다.

  • PDF

Degradation and hole formation of the Te-based thin films (Te을 기본으로 한 박막에서의 열화와 미세구멍형성에 관한 연구)

  • Lee, Hyun-Young;Park, Tae-Sung;Um, Jeong-Ho;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.207-209
    • /
    • 1987
  • This paper reports the effect of additive elements such as Bi, Sb on degradation and hole formation of the Te-Se thin films. Changes in light transmission were used to monitor the degradation rate of thin Te films in an accelerated temperature-humidity environment. In thin accelerated temperature-humidity environment, $(Te_{86}Se_{14})_{70}Bi_{30}$ thin film was stable and $(Te_{86}Se_{14})_{50}Sb_{50}$ thin film was unstable in comparison with the other films that used in this experiment. The hole formation was carried out in the Te-based thin films.

  • PDF